Bounded Transport in Tilings

Lorenzo Sadun

University of Texas

June 14, 2018

< □ > < 同 >

Framing the question Pretty pictures Pattern-Equivariant Cohomology Cohomology solves transport Answers to puzzles Conjectures, partial results and open problems	
Outline	

æ

-≣->

<= ≣ ► <

Outline

Framing the question

2 Pretty pictures

э

(日)

- 2 Pretty pictures
- Operation Pattern-Equivariant Cohomology

- 2 Pretty pictures
- 3 Pattern-Equivariant Cohomology
- 4 Cohomology solves transport

- 2 Pretty pictures
- 3 Pattern-Equivariant Cohomology
- 4 Cohomology solves transport
- **5** Answers to puzzles

- 2 Pretty pictures
- Operation Pattern-Equivariant Cohomology
- 4 Cohomology solves transport
- 5 Answers to puzzles
- 6 Conjectures, partial results and open problems

Table of Contents

Framing the question

- 2 Pretty pictures
- 3 Pattern-Equivariant Cohomology
- ④ Cohomology solves transport
- 5 Answers to puzzles
- 6 Conjectures, partial results and open problems

< 口 > < 同 >

★ Ξ →

The question

Given a (repetitive, uniquely ergodic, aperiodic) tiling T and two locally-determined mass distributions f_1 , f_2 on T:

• When is it possible to do a bounded transport from f_1 to f_2 ?

★ ∃ → ★

The question

Given a (repetitive, uniquely ergodic, aperiodic) tiling T and two locally-determined mass distributions f_1 , f_2 on T:

- When is it possible to do a bounded transport from f_1 to f_2 ?
- When can that bounded transport be done in a strongly pattern-equivariant way?

4日 > 4 回 > 4 回 > 4

The question

Given a (repetitive, uniquely ergodic, aperiodic) tiling T and two locally-determined mass distributions f_1 , f_2 on T:

- When is it possible to do a bounded transport from f_1 to f_2 ?
- When can that bounded transport be done in a strongly pattern-equivariant way?
- When can it be done in a weakly pattern-equivariant way?

A 3 3 4 4

The question

Given a (repetitive, uniquely ergodic, aperiodic) tiling T and two locally-determined mass distributions f_1 , f_2 on T:

- When is it possible to do a bounded transport from f_1 to f_2 ?
- When can that bounded transport be done in a strongly pattern-equivariant way?
- When can it be done in a weakly pattern-equivariant way?
- What does this have to do with cohomology?

イロト イポト イラト イラト

Defining our terms

• A mass distribution f on T is an assignment of a non-negative number to each tile, representing the total amount of mass in that tile.

Defining our terms

- A mass distribution f on T is an assignment of a non-negative number to each tile, representing the total amount of mass in that tile.
- The distribution f is strongly pattern equivariant (sPE) if ∃R > 0 such that for each tile t, f(t) is determined exactly by the pattern of T in an R-neighborhood of t.

Defining our terms

- A mass distribution f on T is an assignment of a non-negative number to each tile, representing the total amount of mass in that tile.
- The distribution f is strongly pattern equivariant (sPE) if $\exists R > 0$ such that for each tile t, f(t) is determined exactly by the pattern of T in an R-neighborhood of t.
- The distribution *f* is *weakly pattern equivariant* (wPE) if it is the uniform limit of sPE distributions.

Defining our terms

- A mass distribution f on T is an assignment of a non-negative number to each tile, representing the total amount of mass in that tile.
- The distribution f is strongly pattern equivariant (sPE) if $\exists R > 0$ such that for each tile t, f(t) is determined exactly by the pattern of T in an R-neighborhood of t.
- The distribution *f* is *weakly pattern equivariant* (wPE) if it is the uniform limit of sPE distributions.
- A bounded transport from f_1 to f_2 is a set of rules for moving mass around (e.g. send 10 kg from tile t_1 to tile t_2 , 3kg from t_2 to t_3 , and 5 kg from t_3 to t_1) such that
 - The motion changes f_1 to f_2 , and
 - No mass is moved by more than a fixed distance \boldsymbol{D}

Pattern equivariant transport

• The transport is sPE if there is a radius R such that the transport from each t_i to t_j is determined exactly by the pattern of T in an R-neighborhood of t_i .

Pattern equivariant transport

- The transport is sPE if there is a radius R such that the transport from each t_i to t_j is determined exactly by the pattern of T in an R-neighborhood of t_i .
- wPE is the uniform limit of sPE. For any ε there exists R_ε such that the transport from t_i to t_j is determined within ε by the R_ε neighborhood of t_i.

Table of Contents

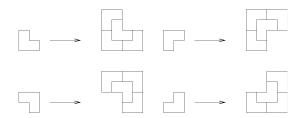
Framing the question

- 2 Pretty pictures
- 3 Pattern-Equivariant Cohomology
- ④ Cohomology solves transport
- 5 Answers to puzzles
- 6 Conjectures, partial results and open problems

< <p>I > < <p>I

★ Ξ →

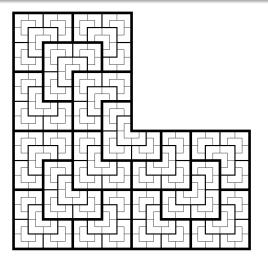
Musical chairs



э

(日)

Musical chairs



イロト イポト イヨト イヨト

Three different mass distributions

• f₁ puts 2 kg on every tile that sits in the standard L configuration, i.e. missing the northeast corner, and no mass on the other three kinds of tiles.

31.5

Three different mass distributions

- f₁ puts 2 kg on every tile that sits in the standard L configuration, i.e. missing the northeast corner, and no mass on the other three kinds of tiles.
- f₂ puts 1 kg on every tile that is missing a NE or SW corner, and none on tiles that are missing NW or SE corners.

Three different mass distributions

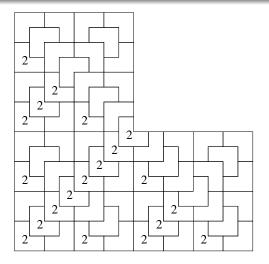
- f₁ puts 2 kg on every tile that sits in the standard L configuration, i.e. missing the northeast corner, and no mass on the other three kinds of tiles.
- f₂ puts 1 kg on every tile that is missing a NE or SW corner, and none on tiles that are missing NW or SE corners.
- *f*₃ puts 1 kg on every tile that is missing a NW or SE corner, and non on tiles that are missing NE or SW corners.

Three different mass distributions

- f₁ puts 2 kg on every tile that sits in the standard L configuration, i.e. missing the northeast corner, and no mass on the other three kinds of tiles.
- f₂ puts 1 kg on every tile that is missing a NE or SW corner, and none on tiles that are missing NW or SE corners.
- f₃ puts 1 kg on every tile that is missing a NW or SE corner, and non on tiles that are missing NE or SW corners.
- All three distributions have overall density 0.5 kg/tile. Which are related by bounded/wPE/sPE transport?

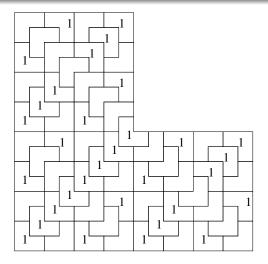
イロト イポト イラト イラ

2 kg on the NE chairs



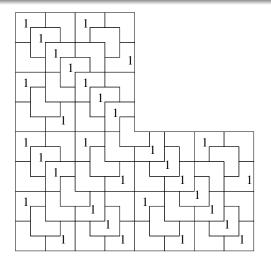
イロト イポト イヨト イヨト

1 kg on the NE and SW chairs



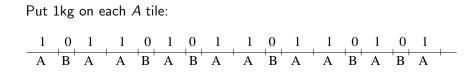
イロト イヨト イヨト イヨト

1 kg on the NW and SE chairs



イロト イボト イヨト イヨト

A Fibonacci mass distribution



(日)

Another Fibonacci mass distribution

Put
$$\phi = (1+\sqrt{5})/2$$
 kg on each B tile.

Same overall density. Is there bounded/wPE/sPE transport?

• = • •

Table of Contents

Framing the question

2 Pretty pictures

3 Pattern-Equivariant Cohomology

4 Cohomology solves transport

5 Answers to puzzles

6 Conjectures, partial results and open problems

★ Ξ →

Pattern-equivariant cochains

- A tiling *T* gives a decomposition of ℝⁿ into vertices, edges, 2-cells, 3-cells, etc. Tiles are *n*-cells. Orient the cells arbitrarily.
- A (real-valued) *k*-cochain assigns a real number to each oriented *k*-cell. A mass distribution is just an *n*-cochain.
- *k*-cochains can be bounded/wPE/sPE.
- Coboundaries: If α is a k-cochain, and c is a (k + 1)-cell, then (δα)(c) := α(∂c).
- If α is bounded/wPE/sPE, so is $\delta \alpha$, albeit with bigger radius.
- Let Ω_w^k and Ω_s^k denote the weakly and strongly PE k-cochains on T.

< ロ > < 同 > < 三 > < 三 >

Strong PE cohomology

A strongly PE cochain α is said to be

• Closed is $\delta \alpha = 0$,

(日)

Strong PE cohomology

A strongly PE cochain α is said to be

- Closed is $\delta \alpha = 0$,
- Exact if $\alpha = \delta \beta$ for some sPE cochain β ,

★ Ξ →

Strong PE cohomology

A strongly PE cochain α is said to be

- Closed is $\delta \alpha = 0$,
- Exact if $\alpha = \delta \beta$ for some sPE cochain β ,
- Weakly exact if $\alpha = \delta \gamma$ for some wPE cochain γ .

< ∃ >

Strong PE cohomology

A strongly PE cochain α is said to be

- Closed is $\delta \alpha = 0$,
- Exact if $\alpha = \delta \beta$ for some sPE cochain β .
- Weakly exact if $\alpha = \delta \gamma$ for some wPE cochain γ . • $H_{PE}^{k} = \frac{\text{Closed } k\text{-cochains}}{\text{Exact } k\text{-cochains}}$

(日)

Strong PE cohomology

A strongly PE cochain α is said to be

- Closed is $\delta \alpha = 0$.
- Exact if $\alpha = \delta\beta$ for some sPE cochain β ,
- Weakly exact if $\alpha = \delta \gamma$ for some wPE cochain γ .
- $H_{PE}^{k} = \frac{\text{Closed } k\text{-cochains}}{\text{Exact } k\text{-cochains}}$
- A cohomology class is asymptotically negligible (AN) if it can be represented by a weakly exact cochain.

A 3 5 4

A topological invariant

Theorem (Kellendonk-Putnam, S)

If T is a repetitive tiling, then H_{PE}^k is canonically isomorphic to the k-th real-valued Čech cohomology $\check{H}^k(\Omega_T)$, where Ω_T is the continuous hull of T. In particular, all tilings in Ω_T have the same PE cohomology.

A topological invariant

Theorem (Kellendonk-Putnam, S)

If T is a repetitive tiling, then H_{PE}^{k} is canonically isomorphic to the k-th real-valued Čech cohomology $\check{H}^{k}(\Omega_{T})$, where Ω_{T} is the continuous hull of T. In particular, all tilings in Ω_{T} have the same PE cohomology.

A lot is known about cohomology of tiling spaces. If we can reduce questions of transport to questions of cohomology, we win.

Integration and well-balanced cochains

 k-cochains are made to be integrated on k-chains. If α is an n-cochain and X is a union of tiles, then

$$\alpha(X) = \sum_{t \in X} \alpha(t).$$

• α is *well-balanced* if $\exists C < \infty$ such that, for any finite union X of tiles,

$$|\alpha(X)| \leq C |\partial X|.$$

 Adding δβ to α does not change well-balancedness, since
 |δβ(X)| = |β(∂X)| ≤ C|∂X|. Well-balancedness is a property
 of cohomology *classes*, not just cochains.

Table of Contents

Framing the question

2 Pretty pictures

3 Pattern-Equivariant Cohomology

4 Cohomology solves transport

5 Answers to puzzles

6 Conjectures, partial results and open problems

< ∃ > <

Cohomological answers to transport questions

If f_1 and f_2 are mass distributions on T, then f_1 and f_2 are closed and define cohomology classes $[f_1]$ and $[f_2]$. Then

• Theorem: There is a bounded transport from f_1 to f_2 if and only if $[f_1 - f_2]$ is well-balanced.

< ロ > < 同 > < 三 > < 三 >

Cohomological answers to transport questions

If f_1 and f_2 are mass distributions on T, then f_1 and f_2 are closed and define cohomology classes $[f_1]$ and $[f_2]$. Then

- Theorem: There is a bounded transport from f_1 to f_2 if and only if $[f_1 f_2]$ is well-balanced.
- There is a wPE transport from f_1 to f_2 if and only if $f_1 f_2$ is weakly exact.

< ロ > < 同 > < 回 > < 回 >

Cohomological answers to transport questions

If f_1 and f_2 are mass distributions on T, then f_1 and f_2 are closed and define cohomology classes $[f_1]$ and $[f_2]$. Then

- Theorem: There is a bounded transport from f_1 to f_2 if and only if $[f_1 f_2]$ is well-balanced.
- There is a wPE transport from f_1 to f_2 if and only if $f_1 f_2$ is weakly exact.
- There is a sPE transport from f_1 to f_2 if and only if $f_1 f_2$ is exact, i.e. if and only if $[f_1] = [f_2]$.

< ロ > < 同 > < 回 > < 回 > .

Laczkovich and Hall

- For fixed D, let X_{+D} be the union of all tiles within distance D of the tiles of X.
- If there is a bounded transport from f_1 to f_2 moving mass a maximum distance D, then for any X, $f_1(X_{+D}) \ge f_2(X)$ and $f_2(X_{+D}) \ge f_1(X)$.
- Using the Hall Marriage Theorem, Laczkovich proved that this condition is sufficient for the existence of bounded transport.
- We need to show that the Laczkovich condition is equivalent to well-boundedness.

< ロ > < 同 > < 三 > < 三 >

Trains and border crossings

Imagine supply depots in each tile. WLOG assume that f_1 and f_2 are strictly positive and bounded below by ϵ . Ship goods by train to nearby tiles. Customs agents keep track of how much mass crosses each border.

- If $f_1 f_2$ is well-balanced, and if $C < N\epsilon$ for some integer N, and if the tiles have a maximum of M faces, then we can accomplish the mass transport from f_1 to f_2 by interpolating linearly in NM steps. At each step the Lackovich condition is met with D being the diameter of the largest tile.
- If f₁ and f₂ satisfy the Laczkovich condition, then there is a bounded transport. For each edge e let β(e) be the net amount of mass crossing the edge. Then δβ = f₁ f₂. Since β is bounded, |(f₁ f₂)(X)| = |β(∂X)| ≤ C|∂X|.

PE border crossings

- If the transport is (weakly or strongly) PE, then β is (weakly or strongly) PE, and $f_1 f_2$ is (weakly or strongly) exact.
- Conversely, if $f_1 f_2 = \delta\beta$ for some PE cochain β , then β gives the instructions for mass transport. If there's not enough mass in some tiles to transport across an edge in one step, use multiple steps.

< ロ > < 同 > < 三 > < 三 >

Table of Contents

Framing the question

2 Pretty pictures

3 Pattern-Equivariant Cohomology

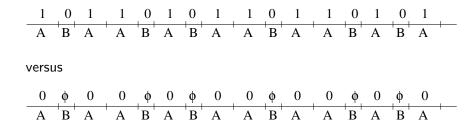
4 Cohomology solves transport

5 Answers to puzzles

6 Conjectures, partial results and open problems

< ∃ > <

Fibonacci puzzle



3

Fibonacci answer

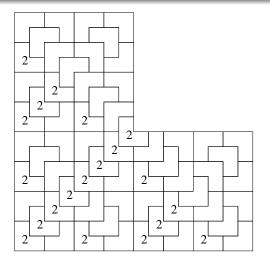
- For the Fibonacci tiling, $\check{H}^1(\Omega_T) = \mathbb{Z}^2$, so $\check{H}^1(\Omega_T, \mathbb{R}) = \mathbb{R}^2$.
- H¹_{AN} = ℝ. The difference of two sPE mass distributions is weakly exact if and only if they have the same density.
- So there is a wPE transport, and hence a bounded transport. But is there a sPE transport?

Fibonacci answer

- For the Fibonacci tiling, $\check{H}^1(\Omega_T) = \mathbb{Z}^2$, so $\check{H}^1(\Omega_T, \mathbb{R}) = \mathbb{R}^2$.
- H¹_{AN} = ℝ. The difference of two sPE mass distributions is weakly exact if and only if they have the same density.
- So there is a wPE transport, and hence a bounded transport. But is there a sPE transport?
- No! If f₁ − f₂ = δβ and β is sPE, then β takes on the exact same value repeatedly, say at positions a and b. But then (f₁ − f₂)[a, b] = 0. But (f₁ − f₂) is a positive multiple of 1 minus a positive multiple of φ, and cannot be zero.

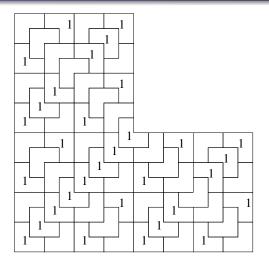
< ロ > < 同 > < 三 > < 三 >

2 kg on the NE chairs

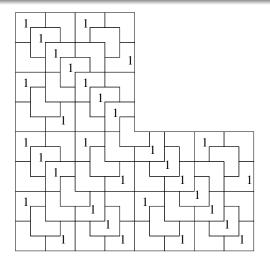


イロト イポト イヨト イヨト

1 kg on the NE and SW chairs



1 kg on the NW and SE chairs



イロト イボト イヨト イヨト

Chair answers

- For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.
- One generator counts all tiles equally. Not well-balanced.

∃ → ∢

Chair answers

- For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.
- One generator counts all tiles equally. Not well-balanced.
- NE + SW SE NW is cohomologically trivial. Every 1-supertile has exactly two (NE or SW) and two (NW + SE). To get sPE transport, just move mass within each 1-supertile.

Chair answers

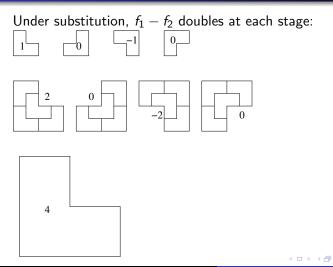
- For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.
- One generator counts all tiles equally. Not well-balanced.
- NE + SW SE NW is cohomologically trivial. Every 1-supertile has exactly two (NE or SW) and two (NW + SE). To get sPE transport, just move mass within each 1-supertile.
- One generator counts NE minus SW. This is f₁ f₂. Not weakly exact, so there is no wPE transport.
- (Last generator counts NW minus SE.)

Chair answers

- For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.
- One generator counts all tiles equally. Not well-balanced.
- NE + SW SE NW is cohomologically trivial. Every 1-supertile has exactly two (NE or SW) and two (NW + SE). To get sPE transport, just move mass within each 1-supertile.
- One generator counts NE minus SW. This is $f_1 f_2$. Not weakly exact, so there is no wPE transport.
- (Last generator counts NW minus SE.)
- Remaining question: Is $f_1 f_2$ well-balanced?

< ロ > < 同 > < 三 > < 三 >

Scaling properties



Lorenzo Sadun Bounded Transport in Tilings

< ∃ >

N log N

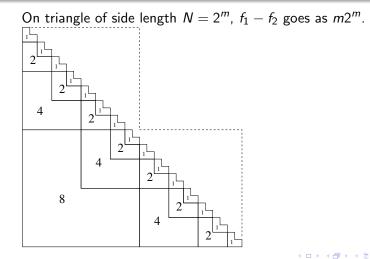


Table of Contents

Framing the question

2 Pretty pictures

3 Pattern-Equivariant Cohomology

4 Cohomology solves transport

5 Answers to puzzles

6 Conjectures, partial results and open problems

< ∃ > <

Equivalence?

• sPE transport \implies wPE transport \implies bounded transport.

Lorenzo Sadun Bounded Transport in Tilings

(日)

Equivalence?

- $\bullet \ {\sf sPE} \ {\sf transport} \ \Longrightarrow \ {\sf wPE} \ {\sf transport} \ \Longrightarrow \ {\sf bounded} \ {\sf transport}.$
- $[\alpha] = 0 \implies \alpha$ is weakly exact $\implies \alpha$ is well-balanced.

<ロト < 同ト < ヨト < ヨト

Equivalence?

- sPE transport \implies wPE transport \implies bounded transport.
- $[\alpha] = 0 \implies \alpha$ is weakly exact $\implies \alpha$ is well-balanced.
- But what about the converses?

(日)

Existence of wPE transport does not imply existence of sPE transport.

AN classes exist. Fibonacci puzzle has a wPE solution but not a sPE solution.

★ ∃ ► < ∃ ►</p>

wPE vs. bounded transport

Bounded transport is not necessarily wPE.

Image: A Image: A

wPE vs. bounded transport

Bounded transport is not necessarily wPE.

Take the standard square lattice on \mathbb{R}^2 . Let $f_1 = f_2 = \text{constant}$. (E.g. 1kg on each tile). Move mass from (0,0) to (0,1) to (1,1) to (1,0) to (0,0).

- Initial and final mass distributions are sPE. (Constant!)
- Transport process is not wPE.

wPE vs. bounded transport

Bounded transport is not necessarily wPE.

Take the standard square lattice on \mathbb{R}^2 . Let $f_1 = f_2 = \text{constant}$. (E.g. 1kg on each tile). Move mass from (0,0) to (0,1) to (1,1) to (1,0) to (0,0).

- Initial and final mass distributions are sPE. (Constant!)
- Transport process is not wPE.
- Problem is gauge freedom. Need a rule to fix the curl around each vertex.

4 E 5 4

Conjecture 1

Let f_1 and f_2 be sPE mass distributions for a repetitive and uniquely ergodic tiling T. If there exists a bounded transport from f_1 to f_2 , then there exists a (possibly different) wPE transport from f_1 to f_2 .

Conjecture 1

Let f_1 and f_2 be sPE mass distributions for a repetitive and uniquely ergodic tiling T. If there exists a bounded transport from f_1 to f_2 , then there exists a (possibly different) wPE transport from f_1 to f_2 .

Cohomological restatement:

If α is a well-balanced sPE *n*-cochain on Ω_T , then α is asymptotically negligible.

Expanding the question

Generalize definitions of well-bounded and asymptotically negligible to cohomology classes of all degrees:

- A closed k-cochain is well-balanced if its integral over any k-chain X (union of k-faces of tiles in T) is bounded by the boundary of X.
- A class in H^k is well-balanced if it is represented by a well-balanced cochain.
- A class is H^k is asymptotically negligible if it is represented by a weakly exact cochain.

→ Ξ →

Expanding the question

Generalize definitions of well-bounded and asymptotically negligible to cohomology classes of all degrees:

- A closed k-cochain is well-balanced if its integral over any k-chain X (union of k-faces of tiles in T) is bounded by the boundary of X.
- A class in H^k is well-balanced if it is represented by a well-balanced cochain.
- A class is H^k is asymptotically negligible if it is represented by a weakly exact cochain.

More general conjecture: Every well-balanced cohomology class of arbitrary degree is asymptotically negligible.

Status of the conjecture

 True when k = 1, independent of n. (Gottschalk-Hedlund theorem. Tiling version by Kellendonk-S) A closed sPE 1-cochain is weakly exact if and only if its integral is bounded.

Status of the conjecture

- True when k = 1, independent of n. (Gottschalk-Hedlund theorem. Tiling version by Kellendonk-S) A closed sPE 1-cochain is weakly exact if and only if its integral is bounded.
- True when T is a codimension-1 canonical projection tiling ("stepped plane"). H^k is generated by H¹ and H¹ is spanned by dx¹, dx², ..., dxⁿ and dβ where β is wPE. dβ ∧ γ = d(β ∧ γ).

F 4 3 F 4

Status of the conjecture

- True when k = 1, independent of n. (Gottschalk-Hedlund theorem. Tiling version by Kellendonk-S) A closed sPE 1-cochain is weakly exact if and only if its integral is bounded.
- True when T is a codimension-1 canonical projection tiling ("stepped plane"). H^k is generated by H¹ and H¹ is spanned by dx¹, dx², ..., dxⁿ and dβ where β is wPE. dβ ∧ γ = d(β ∧ γ).
- Partial results when T is a self-similar (substitution) tiling.

イロト イポト イラト イラト

Results for substitution tilings

T is a substitution tiling with stretching factor λ. Substitution map σ : Ω_T → Ω_T induces map σ^{*} : H^k(Ω_T, ℝ) → H^k(Ω_T, ℝ). Decompose H^k(Ω_T, ℝ) into (generalized) eigenspaces of σ^{*}.

Results for substitution tilings

- *T* is a substitution tiling with stretching factor λ. Substitution map σ : Ω_T → Ω_T induces map σ^{*} : H^k(Ω_T, ℝ) → H^k(Ω_T, ℝ). Decompose H^k(Ω_T, ℝ) into (generalized) eigenspaces of σ^{*}.
- If eigenvalue μ has $|\mu|<\lambda^{k-1},$ then class $[\alpha]$ is AN, hence WB.

Results for substitution tilings

- *T* is a substitution tiling with stretching factor λ. Substitution map σ : Ω_T → Ω_T induces map σ^{*} : H^k(Ω_T, ℝ) → H^k(Ω_T, ℝ). Decompose H^k(Ω_T, ℝ) into (generalized) eigenspaces of σ^{*}.
- If eigenvalue μ has $|\mu|<\lambda^{k-1},$ then class $[\alpha]$ is AN, hence WB.
- If $|\mu| > \lambda^{k-1}$, or if $|\mu| = \lambda^{k-1}$ and $[\alpha]$ isn't an eigenvector, then $[\alpha]$ is not WB and is not AN.

(人間) とうり くうり

Results for substitution tilings

- *T* is a substitution tiling with stretching factor λ. Substitution map σ : Ω_T → Ω_T induces map σ^{*} : H^k(Ω_T, ℝ) → H^k(Ω_T, ℝ). Decompose H^k(Ω_T, ℝ) into (generalized) eigenspaces of σ^{*}.
- If eigenvalue μ has $|\mu|<\lambda^{k-1},$ then class $[\alpha]$ is AN, hence WB.
- If $|\mu| > \lambda^{k-1}$, or if $|\mu| = \lambda^{k-1}$ and $[\alpha]$ isn't an eigenvector, then $[\alpha]$ is not WB and is not AN.
- If $|\mu| = \lambda^{k-1}$ and $[\alpha]$ is an eigenvector, then $[\alpha]$ is not AN.

くロ と く 同 と く ヨ と 一

Open question

But in the borderline case, could $[\alpha]$ still be WB?

Open question

But in the borderline case, could $[\alpha]$ still be WB?

Lots of interesting examples, like chair and Penrose. In all cases studied so far, maximal value of $\int \alpha$ on region of linear size L goes as $L^{k-1} \ln(L)$.

But in the borderline case, could $[\alpha]$ still be WB?

Lots of interesting examples, like chair and Penrose. In all cases studied so far, maximal value of $\int \alpha$ on region of linear size L goes as $L^{k-1} \ln(L)$.

Answer in time for Jean-Marc's 70th birthday.

Framing the question	
Pretty pictures	
Pattern-Equivariant Cohomology	
Cohomology solves transport	
Answers to puzzles	
Conjectures, partial results and open problems	

Merci de votre attention!