Gluing bifurcations for monotone families of vector fields on a torus

Robert S MacKay and Claude Baesens

Mathematics Institute, University of Warwick

Jean-Marc, Les Houches, 1981

Gluing bifurcations

253 C. R. Acad. Sc. Paris, t. 299, Série I, nº 7, 1984 SYSTÈMES DYNAMIQUES. — Une nouvelle bifurcation de codimension 2 : le collage de cycles. Note de Pierre Coullet, Jean-Marc Gambaudo et Charles Tresser, présentée par René Thom. Remise le 14 mai 1984. Nous décrivons une nouvelle bifurcation de codimension 2 pour des champs de vecteurs dans \mathbb{R}^n , $n \ge 3$. DYNAMICAL SYSTEMS. - A New Bifurcation of Codimension Two: the Gluing of Cycles. We describe a new bifurcation of codimension two for vector fields in \mathbb{R}^n , $n \ge 3$.

(and Glendinning, 1984, for \mathbb{Z}_2 -symmetric case). But already interesting in 2D (Turaev, 1984).

Gluing with \mathbb{Z}_2 -symmetry in plane

Homotopically non-trivial versions on cylinder [BGKM91]

Full bifurcation diagram has two parameters

Monotone families of vector fields on the torus

 $\dot{x} = G(\Omega, x), \quad \Omega \in \mathbb{R}^2, \quad x \in \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2, \quad G \in C^3[\mathbb{R}^2 \times \mathbb{T}^2],$

with c > 0 such that $\langle d_{\Omega}G \ \omega, \omega \rangle \ge c \ |\omega|^2$ for all tangent vectors ω to \mathbb{R}^2 .

Example:

$$G:\begin{cases} \dot{x} = \Omega_x - \cos 2\pi y - \varepsilon \cos 2\pi x\\ \dot{y} = \Omega_y - \sin 2\pi y - \varepsilon \sin 2\pi x\end{cases}$$

Assume all bifurcations are codimension-one or two and the family is transverse to them.

Study the simplest cases, meaning that the numbers of a sequence of types of object are minimised.

We nevertheless obtain quite complicated bifurcation diagrams, including lots of gluing bifurcations.

1. Equilibria: By the monotonicity assumption the set

$$E := \{ (\mathbf{\Omega}, \mathbf{x}) \in \mathbb{R}^2 \times \mathbb{T}^2 : G(\mathbf{\Omega}, \mathbf{x}) = 0 \}$$

of equilibria is a graph over \mathbb{T}^2 : $\Omega = \Omega_E(x)$.

Its projection R to \mathbb{R}^2 has saddle-node boundaries, possibly with cusps and self-intersections.

• Assume at most two equilibria. Then R is an annulus.

Principal homotopy classes: Going round a saddle-node equilibrium boundary γ (sne) anticlockwise defines a non-trivial homotopy class on E, which we call *vertical*.

Going around E to cross the two fold curves without making a revolution around R defines another homotopy class, which we call *horizontal*.

The equilibria have index ± 1 as shown.

2. Bogdanov-Takens points (*B* pts):

Follow a sne curve γ for one vertical revolution. Its tangent vector $(\delta\Omega, \delta x)$ has $\begin{cases} \delta\Omega \neq 0 \text{ and makes one revolution} \\ \delta x \neq 0 \text{ and makes no revolutions} \end{cases}$ $G(\Omega, x) = 0$ implies the components are related by $-d_{\Omega}G \,\delta\Omega = +d_x G \,\delta x =: \delta x'.$

By monotonicity, $d_{\Omega}G$ is invertible so $\delta x'$ makes one revolution. $K := \ker d_x G$ is 1D and transverse to δx , so makes no revolutions. Thus $\delta x'$ lies in K at least twice, giving B points.

Label B points by the index of the equilibrium to which $\delta x'$ points.

(= Fiedler's B-index).

So each sne curve contains at least one B^+ and one B^- point.

• Assume precisely four *B* points.

B points produce arcs of centre (c), neutral saddle (ns), and contractible homoclinic connection (chc), and a contractible periodic orbit (cpo) between the c and chc curves.

3. Trace-zero curves: We extended proof of *B* points – there exist at least two curves of centre connecting *B* points on opposite saddle-node curves.

With 4 *B* points we have **precisely two such**. Fiedler showed that **a curve of centre from a** *B* **point must join to a** *B* **point of opposite** *B***-index**. They cannot cross, so up to orientation of tangencies:

Trace-zero curves either connect B points or form closed curves avoiding sne. Assume none of the latter.

Various options for neutral-saddle curves, but intersections of ns with c make extra bifurcations so assume no intersections. End up with only (up to orientations):

4. Flow in hole: As x performs one revolution of type (m, n), $G(\Omega, x)$ performs n revolutions. Deduce there exists no crosssection to the flow, hence at least two Reeb components of horizontal type, with $G(\Omega, x)$ making a total of one rotation for one vertical revolution of x.

• Assume minimum number of invariant annuli, then must be

5. Flow outside *R*: When *x* makes any revolution, $G(\Omega, x)$ makes no rotations. Assume flow has no Reeb components. Then there is a cross-section (Poincaré flow), so every orbit has the same direction of average velocity (homology direction).

The homology direction makes one revolution as Ω makes one revolution outside R.

6. Saddle-node loops (Z points), rotational homoclinic connections (rhc), and necklace (N points):

A rather long argument leads to at least: (assume no more)

7. Contractible periodic orbits (cpo):

Both B and N points generate curves of contractible homoclinic connection (chc). Assume at most one contractible pe-

8. Neutral rotational homoclinic connections (K point): The ns curves must intersect the rhc curves. This implies at least two K points of horizontal type in each of the top and bottom of R.

Assume no more. They generate curves of saddle-node periodic orbit of horizontal type.

9. "Half-plane fan" (*H* point):

The snp curves from the K points have to join to snp curves outside R, hence at least one creates an H point (snp⁺ \cap rhc⁻). Assume just one at the top and one at the bottom.

An *H* point generates a half-plane fan of tongues for each rational homology direction and curves for each irrational homology direction in a half plane.

The rational tongues all start with rhc boundaries.

Unfolding of a Half-plane fan [BGKM91]:

To complete the diagram, analyse intersection of tongues with ns and chc, which create K points and pendant points (P).

We prove for ε small our example satisfies all our minimality assumptions except it has a region with more than one cpo.

Reference

C Baesens, RS MacKay, Simplest bifurcation diagrams for monotone families of vector fields on a torus, Nonlinearity 31 (2018) 2928–81

Project for the future: Genus > 1. Then all three cycles can have non-zero homology.

Joyeux Anniversaire, Jean-Marc !

