Maximal isotopies, transverse foliations and orbit forcing theory for surface homeomorphisms

Patrice Le Calvez (IMJ-PRG) join work with Fabio Tal (USP)

Nice

Systèmes dynamiques et systèmes complexes (pour célebrer les 60 ans de Jean-Marc)

June 12, 2018

向下 イヨト イヨト

Forcing theory in dim 1

Theorem [Sharkovski]: Define the following order \triangleleft on $\mathbb{N} \setminus \{0\}$:

 $1 \lhd 2 \lhd 2^2 \lhd \ldots 2^2.5 \lhd 2^2.3 \lhd \cdots \lhd 2.5 \lhd 2.3 \lhd \cdots \lhd 7 \lhd 5 \lhd 3$

A continuous map $f : \mathbb{R} \to \mathbb{R}$ with a periodic point of period p has a periodic point of period q, if $q \triangleleft p$.

Theorem [Li-Yorke]: If a continuous map $f : \mathbb{R} \to \mathbb{R}$ has a periodic point of period 3, then

- The topological entropy of h(f) is positive;
- There exists $\lambda > 1$ such that $\sharp Fix(f^n) \ge \lambda^n$, for every $n \ge 1$.

イロト イポト イヨト イヨト 二日

Forcing theory in dim 1

Theorem [Sharkovski]: Define the following order \triangleleft on $\mathbb{N} \setminus \{0\}$:

 $1 \lhd 2 \lhd 2^2 \lhd \ldots 2^2.5 \lhd 2^2.3 \lhd \cdots \lhd 2.5 \lhd 2.3 \lhd \cdots \lhd 7 \lhd 5 \lhd 3$

A continuous map $f : \mathbb{R} \to \mathbb{R}$ with a periodic point of period p has a periodic point of period q, if $q \triangleleft p$.

Theorem [Li-Yorke]: If a continuous map $f : \mathbb{R} \to \mathbb{R}$ has a periodic point of period 3, then

- The topological entropy of h(f) is positive;
- There exists $\lambda > 1$ such that $\sharp Fix(f^n) \ge \lambda^n$, for every $n \ge 1$.
- true if there exists x such that $f^3(x) \leq x < f(x) < f^2(x)$
- ► f has a topological horsehoe
- key tool: intermediate value theorem

Definition: Let f be a continuous map on a topological space X. Say that f has a *topological horseshoe* if there exists a compact set $Y \subset X$ invariant by an iterate f^r , $r \ge 1$, such that:

- $(Y, f_{|Y}^{r})$ is an extension of the Bernouill shift $(\sigma, \{0, 1\}^{\mathbb{N}})$;
- ► every periodic sequence e ∈ {0,1}^Z admits at least one periodic point of f^r with same period in its fiber;

(replace $\{0,1\}^{\mathbb{N}}$ with $\{0,1\}^{\mathbb{Z}}$ if f is a homeomorphism).

Remarks:

- The entropy of f is positive and the set of periodic points, for an iterate, grows exponentially fast with the period;
- If M is a surface and f is a C²-diffeomorphism, it is equivalent to have positve entropy (Katok).

Forcing theories exist for surface homeomorphisms:

- for braid types of periodic orbits (Nielsen Thurston theory);
- Homotopic Brouwer theory (Franks-Handel).

We present a forcing theory that works for segments of orbits. It is not explicit but has many applications, some related to rotation sets, some related the existence of topological horseshoes

- ▶ objects: paths in the space of leaves of a certain foliation
- key tool: intersection lemma

(日本)(日本)(日本)

Transitive homeomorphisms of the sphere \mathbb{S}^2

We have the following generalization of a result of M.Handel.

Theorem [LT]: If f is an orientation preserving homeomorphism of \mathbb{S}^2 with a dense orbit. Then:

- either f has a topological horseshoe;
- or f is an irrational pseudo rotation.

Transitive homeomorphisms of the sphere \mathbb{S}^2

We have the following generalization of a result of M.Handel.

Theorem [LT]: If f is an orientation preserving homeomorphism of \mathbb{S}^2 with a dense orbit. Then:

- either f has a topological horseshoe;
- or f is an irrational pseudo rotation.

Definition : An irrational pseudo rotation is an orientation preserving homeomorphism f of S^2 such that

- ► *f* has no periodic point but two fixed points *N*, *S*;
- every other point turns around N and S with irrational angular speed.

(Anosov-Katok examples)

・ 同 ト ・ ヨ ト ・ ヨ ト

Transitive sets of entropy zero homeomorphism of \mathbb{S}^2

Theorem [LT]: Let f be a homeomorphism of \mathbb{S}^2 with no topological horseshoe. If X is a closed invariant set with a dense orbit, then:

- 1. either X is a periodic orbit;
- 2. or X has irrational type;
- 3. or $f_{|X}$ is an extension of an odometer.

向下 イヨト イヨト

Transitive sets of entropy zero homeomorphism of \mathbb{S}^2

Theorem [LT]: Let f be a homeomorphism of \mathbb{S}^2 with no topological horseshoe. If X is a closed invariant set with a dense orbit, then:

- 1. either X is a periodic orbit;
- 2. or X has irrational type;
- 3. or $f_{|X}$ is an extension of an odometer.

In case 2. one can find irrational invariant curves, Aubry-Mather sets, hedgehogs, irrational pseudo rotation,...

In case 3. there exists a nested sequence $(D_n)_{n\geq 0}$ of open disks and an increasing sequence $(q_n)_{n\geq 0}$ of integers with $q_n|q_{n+1}$ such that

$$f^{q_n}(D_n) = D_n, \ f^k(D_n) \cap D_n = \emptyset \ ext{if} \ 0 < k < q_n,$$

 $X \subset igcup_{0 \leqslant k < q_n} f^k(D_n).$

Theorem [Lellouch]: Let M be a closed surface of genus $g \ge 2$ and f a homeomorphism of M isotopic to the identity. Suppose that there exist two Borel invariant probability measures whose rotation vectors have a non vanishing intersection number, then fhas a topological horseshoe.

Definition: The rotation vector $\rho(\mu) \in H_1(M, \mathbb{R})$ of an invariant measure μ is defined as follows:

$$\int_{\mathcal{M}} \int_{I(z)} \omega \, d\mu(z) = \langle [\omega], \rho(\mu) \rangle, \text{ where }$$

- ▶ $I = (f_t)_t \in [0, 1]$ is an isotopy from Id to f and $I(z) : t \mapsto f_t(z)$ the trajectory of z;
- ω is a closed 1-form and $[\omega] \in H^1(M, \mathbb{R})$ its cohomology class.

Generalization of results of Katok, Llibre-MacKay, Pollicott, Matsumoto.

Let M be an oriented surface and f a homeomorphism of M isotopic to the identity. We define

$$\mathcal{E} = \{ \text{isotopies } I = (f_t)_{t \in [0,1]} \text{ from Id to } f \}.$$

Definitions: For every $I = (f_t)_{t \in [0,1]} \in \mathcal{E}$, one can define:

- the *trajectory* $I(z) : t \mapsto f_t(z)$ of $z \in M$;
- the whole trajectory $I^{\mathbb{Z}}(z) = \prod_{k \in \mathbb{Z}} I(f^k(z))$ of $z \in M$;
- the fixed point set $fix(I) = \bigcap_{t \in [0,1]} fix(f_t)$;
- the *domain* dom $(I) = M \setminus fix(I)$.

イロト イポト イラト イラト 一日

Here, M is an oriented surface, f a homeomorphism of M and \mathcal{E} the (non empty) set of isotopies from Id to f.

Definition: Say that $I \in \mathcal{E}$ is *smaller* than $I' \in \mathcal{E}$ $(I \leq I')$ if

- $\operatorname{fix}(I) \subset \operatorname{fix}(I');$
- I' is homotopic to I relative to fix(I).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Here, M is an oriented surface, f a homeomorphism of M and \mathcal{E} the (non empty) set of isotopies from Id to f.

Definition: Say that $I \in \mathcal{E}$ is *smaller* than $I' \in \mathcal{E}$ $(I \leq I')$ if

- $\operatorname{fix}(I) \subset \operatorname{fix}(I');$
- I' is homotopic to I relative to fix(I).

Theorem [Béguin-Crovisier-Le Roux, Jaulent]: For every $I \in \mathcal{E}$, there exists $I' \in \mathcal{E}$ such that $I \preceq I'$ and such that I' is maximal.

(4月) (4日) (4日) 日

Here, M is an oriented surface, f a homeomorphism of M and \mathcal{E} the (non empty) set of isotopies from Id to f.

Definition: Say that $I \in \mathcal{E}$ is *smaller* than $I' \in \mathcal{E}$ $(I \leq I')$ if

- $\operatorname{fix}(I) \subset \operatorname{fix}(I');$
- I' is homotopic to I relative to fix(I).

Theorem [Béguin-Crovisier-Le Roux, Jaulent]: For every $I \in \mathcal{E}$, there exists $I' \in \mathcal{E}$ such that $I \preceq I'$ and such that I' is maximal.

Remarks:

I ∈ E is maximal iff for every z ∈ fix(I) \ fix(I), the loop I(z) is non homotopic to zero in dom(I).

(ロ) (同) (E) (E) (E)

Here, M is an oriented surface, f a homeomorphism of M and \mathcal{E} the (non empty) set of isotopies from Id to f.

Definition: Say that $I \in \mathcal{E}$ is *smaller* than $I' \in \mathcal{E}$ $(I \leq I')$ if

- $\operatorname{fix}(I) \subset \operatorname{fix}(I');$
- I' is homotopic to I relative to fix(I).

Theorem [Béguin-Crovisier-Le Roux, Jaulent]: For every $I \in \mathcal{E}$, there exists $I' \in \mathcal{E}$ such that $I \preceq I'$ and such that I' is maximal.

Remarks:

- I ∈ E is maximal iff for every z ∈ fix(I) \ fix(I), the loop I(z) is non homotopic to zero in dom(I).
- if $(f_t)_{t \in \mathbb{R}}$ is a flow, then $I = (f_t)_{t \in [0,1]}$ is maximal.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Here, M is an oriented surface, f a homeomorphism of M and \mathcal{E} the (non empty) set of isotopies from Id to f.

Theorem [L]: If $I \in \mathcal{E}$ is maximal, there exists a singular oriented C^0 - foliation \mathcal{F} on M such that:

- $\operatorname{sing}(\mathcal{F}) = \operatorname{fix}(I);$
- every trajectory I(z), $z \in \text{dom}(I)$, is homotopic to a path γ transverse to \mathcal{F} , meaning that γ crosses (locally) every leaf from the right to the left.

・ 同 ト ・ ヨ ト ・ ヨ ト

Here, M is an oriented surface, f a homeomorphism of M and \mathcal{E} the (non empty) set of isotopies from Id to f.

Theorem [L]: If $I \in \mathcal{E}$ is maximal, there exists a singular oriented C^0 - foliation \mathcal{F} on M such that:

- $\operatorname{sing}(\mathcal{F}) = \operatorname{fix}(I);$
- every trajectory I(z), $z \in \text{dom}(I)$, is homotopic to a path γ transverse to \mathcal{F} , meaning that γ crosses (locally) every leaf from the right to the left.

Remark: If *I* is induced by a flow defined by a vector field ξ , one can choose \mathcal{F} as the set of integral curves of η , where $\eta \wedge \xi > 0$.

Theorem [L]: If $I \in \mathcal{E}$ is maximal, there exists a singular oriented C^0 - foliation \mathcal{F} on M such that:

- $\operatorname{sing}(\mathcal{F}) = \operatorname{fix}(I);$
- every trajectory I(z), $z \in \text{dom}(I)$, is homotopic to a path γ transverse to \mathcal{F} , meaning that γ crosses (locally) every leaf from the right to the left.

Remark: If $\tilde{l} = (\tilde{f}_t)_{t \in [0,1]}$ is the isotopy on the universal covering space $\widetilde{\text{dom}}(l)$ of $\operatorname{dom}(l)$ starting from Id that lifts $(f_{t|\operatorname{dom}(l)})_{t \in [0,1]}$, then every leaf ϕ of the lifted foliation $\widetilde{\mathcal{F}}$ is a *Brouwer line* of \widetilde{f}_1 : it separates $\widetilde{f}_1(\phi)$ which is on its left and $\widetilde{f}_1^{-1}(\phi)$ which is on its right.

Theorem [L]: If $I \in \mathcal{E}$ is maximal, there exists a singular oriented C^0 - foliation \mathcal{F} on M such that:

- $\operatorname{sing}(\mathcal{F}) = \operatorname{fix}(I);$
- every trajectory I(z), $z \in \text{dom}(I)$, is homotopic to a path γ transverse to \mathcal{F} , meaning that γ crosses (locally) every leaf from the right to the left.

Definitions: The path γ is defined up to a natural relation of equivalence. For every $z \in \text{dom}(I)$ one can define:

- the *transverse trajectory* $I_{\mathcal{F}}(z) = \gamma$;
- the whole transverse trajectory $I_{\mathcal{F}}^{\mathbb{Z}}(z) = \prod_{k \in \mathbb{Z}} I_{\mathcal{F}}(f^k(z))$.

Proposition [LT]: Let f be a homeomorphism of an oriented surface M isotopic to the identity, I a maximal isotopy of f and \mathcal{F} a transverse foliation. If f has no topological horseshoe, the whole transverse trajectory $I_{\mathcal{F}}^{\mathbb{Z}}(z)$ of every point $z \in \text{dom}(I)$ has no \mathcal{F} -transverse self intersection: it may be chosen as a simple curve or a loop.

(過) (目) (日)

Proposition [LT]: Let f be a homeomorphism of an oriented surface M isotopic to the identity, I a maximal isotopy of f and \mathcal{F} a transverse foliation. If f has no topological horseshoe, the whole transverse trajectory $I_{\mathcal{F}}^{\mathbb{Z}}(z)$ of every point $z \in \text{dom}(I)$ has no \mathcal{F} -transverse self intersection: it may be chosen as a simple curve or a loop.

Remark: If *f* has no topological horseshoe, the transverse trajectories look like orbits of a flow and the dynamics of *f* itself look like the dynamics of a flow. For instance, if $M = S^2$ and *z* is recurrent, then $I_{\mathcal{F}}^{\mathbb{Z}}(z)$ may be chosen as a loop (there exists an adequate Poincaré-Bendixson theory).

\mathcal{F} -transverse intersection

Let $\widetilde{\mathcal{F}}$ be a C^0 non singular oriented foliation on \mathbb{R}^2 .

- Every leaf φ is an embedded oriented proper line separating ℝ² into R(φ) (on the right) and L(φ) (on the left).
- The space of leaves is an oriented simply connected manifold (usually non Hausdorff) of dimension 1 (Haefliger-Reeb).

\mathcal{F} -transverse intersection

Let $\widetilde{\mathcal{F}}$ be a C^0 non singular oriented foliation on \mathbb{R}^2 .

- Every leaf φ is an embedded oriented proper line separating ℝ² into R(φ) (on the right) and L(φ) (on the left).
- The space of leaves is an oriented simply connected manifold (usually non Hausdorff) of dimension 1 (Haefliger-Reeb).

Definition: Say that two transverse paths $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ defined on \mathbb{R} have a $\tilde{\mathcal{F}}$ -transverse intersection if $\exists a_1 < b_1$, $\exists a_2 < b_2$ such that:

•
$$\phi_{\widetilde{\gamma}_1(a_1)} \subset L(\phi_{\widetilde{\gamma}_2(a_2)}), \ \phi_{\widetilde{\gamma}_2(a_2)} \subset L(\phi_{\widetilde{\gamma}_1(a_1)});$$

- $\bullet \ \phi_{\widetilde{\gamma}_1(b_1)} \subset R(\phi_{\widetilde{\gamma}_2(b_2)}), \ \phi_{\widetilde{\gamma}_2(b_2)} \subset R(\phi_{\widetilde{\gamma}_1(b_1)});$
- ► ∃ a "crossing" between $\phi_{\widetilde{\gamma}_1(a_1)}, \phi_{\widetilde{\gamma}_2(a_2)}, \phi_{\widetilde{\gamma}_1(b_1)}, \phi_{\widetilde{\gamma}_2(b_2)}$.

\mathcal{F} -transverse intersection

Let $\widetilde{\mathcal{F}}$ be a C^0 non singular oriented foliation on \mathbb{R}^2 .

- Every leaf φ is an embedded oriented proper line separating ℝ² into R(φ) (on the right) and L(φ) (on the left).
- The space of leaves is an oriented simply connected manifold (usually non Hausdorff) of dimension 1 (Haefliger-Reeb).

Definition: Say that two transverse paths $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ defined on \mathbb{R} have a $\tilde{\mathcal{F}}$ -transverse intersection if $\exists a_1 < b_1$, $\exists a_2 < b_2$ such that:

$$\bullet \ \phi_{\widetilde{\gamma}_1(a_1)} \subset L(\phi_{\widetilde{\gamma}_2(a_2)}), \ \phi_{\widetilde{\gamma}_2(a_2)} \subset L(\phi_{\widetilde{\gamma}_1(a_1)});$$

•
$$\phi_{\widetilde{\gamma}_1(b_1)} \subset R(\phi_{\widetilde{\gamma}_2(b_2)}), \ \phi_{\widetilde{\gamma}_2(b_2)} \subset R(\phi_{\widetilde{\gamma}_1(b_1)});$$

► ∃ a "crossing" between $\phi_{\widetilde{\gamma}_1(a_1)}$, $\phi_{\widetilde{\gamma}_2(a_2)}$, $\phi_{\widetilde{\gamma}_1(b_1)}$, $\phi_{\widetilde{\gamma}_2(b_2)}$.

Definition: A transverse path γ to a non singular oriented foliation \mathcal{F} on a surface M has a \mathcal{F} -transverse self intersection if there exists two lifts of γ to the universal covering space \widetilde{M} , with a $\widetilde{\mathcal{F}}$ -transverse intersection.