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Motivation

Priming: the ability of the brain to more quickly activate a target concept in response to a 
related stimulus (prime) CAT —> DOG

Attractor network models: concepts are represented as attracting steady states

Latching dynamics: sequential activation of concepts. A possible mechanism allowing for 
transition from one state to the next is fast synaptic depression.

-the system converges to a stable steady state, corresponding to a concept maintained as 
a long transient by mutual activation of neurons

these states are only transiently stable and lose stability due to synaptic depression-
the trajectory converges to the next steady state- Treves, Cognitive Neuropsych. (2005)

in our model prime-target relations are reflected by non-zero entries in the connectivity matrix-



Latching  
dynamics

Synaptic depression refers to the weakening of the synaptic  
transmission caused by the depletion of the synaptic resources

Tsodyks and Markram, PNAS (1997)

Synaptic depression:

Lerner and Shriki Network transitions in semantic priming

attractors due to synaptic depression mechanisms. Moreover, the
dynamics is regulated by several parameters that are sensitive
to information accumulated during the task and can therefore
change the macroscopic behavior of the network throughout the
experimental session.

In the core of the model are two interconnected computa-
tional layers (Figure 1A), representing semantic memory and lex-
ical/phonological memory. Other layers, performing additional
processes in word recognition, can be added to this basic struc-
ture (see later). Visual input representing a word is assumed to

be orthographically analyzed and fed as external input into the
lexical/phonologic layer where the word is recognized. The activ-
ity elicited in the lexical layer is fed forward to the semantic layer
where the word’s meaning is stored. Importantly, these processes
are bi-directional so that in addition to the feed forward transmis-
sion from the lexical to the semantic layer, the semantic layer can
influence the lexical layer by feedback (lexical-to-orthographic
feedback is addressed at a later stage).

The lexical and semantic layers are modeled as attractor neu-
ral networks with sparse representations and continuous-time

FIGURE 1 | (A) Architecture of the network model. Patterns representing
related concepts are correlated in the semantic network but uncorrelated in
the lexical network. Active units of two toy example patterns representing
“dog” and “cat” are marked. Connections between networks are from
active units of a pattern in one network to all the corresponding active
units in the other network. For simplicity, only some of these connections
are drawn. (B) Correlation of the semantic network state with its stored
memory patterns (representing concepts) as a function of time, showing
the differences in typical transitions under various noise values. Each
pattern is indicated by a curve with a different color (not all correlation
curves are visible at all times, as often they coincide). Convergence to a
concept is achieved when a correlation reaches a value of 0.95 or above.
The network is presented with an external stimulus corresponding to

pattern 1 for 100 ms and then allowed to run freely. Moment of
convergence to a specific pattern is indicated by the corresponding pattern
number above the appropriate line. Mode I demonstrates dynamics
governed by a constant high level of noise. In Mode II, noise is high until
the first transition, and then abruptly decreases. Mode III depicts the
dynamics when the noise is low throughout the trial. (C) Structure of the
semantic memory used in some of the simulations. Width of the
connecting lines represents the correlation strength between the
corresponding concepts. (D) First-transition probabilities of the five main
concepts in the network from (C). Probabilities are indicated by colors
ranging from 0 (dark blue) to 1 (red). Columns represent the presented
words and rows represent their associations. (Source: Lerner et al., 2012a;
reproduced by permission of Wiley).
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Lerner et al  
(Cognitive Science, 2012)



Our model

xi - firing rate variable, xi 2 [0, 1]

si - synaptic variable, si 2 [0, 1]

(Jij) - matrix of excitatory connections, Jij � 0

Note: The excitatory connections weaken while a neuron is active.

ẋi = xi(1� xi)

0

@�µxi � I � �

NX

j=1

xj +
NX

j=1

Jijsixj

1

A+ �, i = 1, . . . , N

ṡi =
1� si

⌧r
� Uxisi

� is a noise term adapted to preserve the invariance of the cube [0, 1]N



Latching dynamics and heteroclinic chains

Recall:

We study heteroclinic chains as a model of latching dynamics.

[0, 1]N-the learned patterns are some of the vertices of the cube

-the spaces defined by
xi = 0 or xi = 1 are invariant

-hence latching dynamics must follow the invariant spaces



- robust for structure preserving perturbations (inv. planes or symmetry)
- cycles/chains can be dynamically attracting 

- weak breaking of the structure ) trajectories shadow cycle/chain

- cycles/chains between non-equilibrium attractors may exist

) random distribution of passage times- noise

and many recurrent connections. This problem is dis-
cussed in detail by Aviel et al. !2003".

C. Winnerless competition principle

1. Stimulus-dependent competition

Here we consider a paradigm of sequence generation
that does not depend on the geometrical structure of the
neural ensemble in physical space. It can, for example,
be a two-dimensional layer with connections between
neighbors or a three-dimensional network with sparse
random connections. This paradigm can be helpful for
the explanation and prediction of many dynamical phe-
nomena in neural networks with excitatory and inhibi-
tory synaptic connections. The paradigm is called the
winnerless competition principle. We have touched on
aspects of WLC networks earlier, and here we expand
on their properties and their possible use in neuro-
science.

“Survival of the fittest” is a cliché that is often associ-
ated with the term competition. However, competition is
not merely a means of determining the winner, as in a
winner-take-all network. It is also a multifunctional in-
strument that nature uses at all levels of the neuronal
hierarchy. Competition is also a mechanism that main-
tains the highest level of variability and stability of neu-
ral dynamics, even if it is a transient behavior.

Over two hundred years ago the mathematicians
Borda and de Condorcet were interested in the process
of plurality elections at the French Royal Academy of
Sciences. They considered voting dynamics in a case of
three candidates A, B, and C. If A beats B and B beats
C in a head-to-head competition, we might reasonably
expect A to beat C. Thus predicting the results of the
election is easy. However, this is not always the case. It
may happen that C beats A, resulting in a so-called Con-
dorcet triangle, and there is no real winner in such a
competitive process !Borda, 1781; Saari, 1995". This ex-
ample is also called a “voting paradox.” The dynamical
image of this phenomenon is a robust heteroclinic cycle
!see Fig. 39". In some specific cases the heteroclinic cycle
is even structurally stable !Guckenheimer and Holmes,
1988; Krupa, 1997; Stone and Armbruster, 1999; Ashwin
et al., 2003; Postlethwaite and Dawes, 2005".

The competition without a winner is also known in
hydrodynamics: Busse and Heikes discovered that con-
vective roll patterns in a rotating plane layer exhibit se-
quential changes of the roll’s direction as a result of the
competition between patterns with different roll orien-
tations. No pattern becomes a winner and the system
exhibits periodic or chaotic switching dynamics !Busse
and Heikes, 1980". For review see Rabinovich et al.
!2000". The same phenomenon has been discovered in a
genetic system, i.e., in experiments with a synthetic net-
work of three transcriptional regulators !Elowitz and
Leibler, 2000". Specifically, these authors described three
repressor genes A, B, and C organized in a closed chain
with unidirectional inhibitory connections such that A,
B, and C beat each other. This network behaves like a

clock: it periodically induces synthesis of green fluores-
cent proteins as an indicator of the state of individual
cells on a time scale of hours.

In neural systems such clock competitive dynamics
can result from the inhibitory connections among neu-
rons. For example, Jefferys et al. !1996" showed that hip-
pocampal and neocortical networks of mutually inhibi-
tory interneurons generate collective 40-Hz rhythms
!gamma oscillations" when excited tonically. Another ex-
ample of neural competition without a winner was dis-
cussed by Ermentrout !1992". The author studied the
dynamics of a single inhibitory neuron connected to a
small cluster of loosely coupled excitatory cells and ob-
served the emergence of a limit cycle through a hetero-
clinic cycle. For autonomous dynamical systems compe-
tition without a winner is a well-known phenomenon.

We use the term WLC principle for the nonautono-
mous transient dynamics of neural systems receiving ex-
ternal stimuli and exhibiting sequential switching among
temporal winners. The main point of the WLC principle
is the transformation of incoming inputs into spatiotem-
poral outputs based on the intrinsic switching dynamics
of the neuronal ensemble !see Fig. 40". In the phase
space of the network, such switching dynamics are rep-
resented by a heteroclinic sequence whose architecture
depends on the stimulus. Such a sequence consists of

FIG. 39. !Color online" Illustration of WLC dynamics. Top
panel: Phase portrait corresponding to the autonomous WLC
dynamics of a three-dimensional case. Bottom panel: Projec-
tion of a nine-dimensional heteroclinic orbit of three inhibitory
coupled FitzHugh-Nagumo spiking neurons in a three-
dimensional space !the variables !1, !3, !3 are linear combina-
tions of the actual phase variables of the system". From
Rabinovich et al., 2001.

1248 Rabinovich et al.: Dynamical principles in neuroscience
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Robust Heteroclinic Chains/Cycles/Networks

CYCLE

M.I. Rabinovich et al. / Physics of Life Reviews 9 (2012) 51–73 59

Fig. 6. Representation of a simple heteroclinic chain (left) and a robust sequence of metastable states (right). In the phase space of a dynamical
model a temporal winner (metastable state) is represented by a saddle fixed point. Based on this landscape metaphor it is easy to see that two
saddles can be connected by an unstable one-dimensional saddle separatrix (see the left panel). This is the simplest heteroclinic sequence. In many-
dimensional phase space (multiple interacting modes) heteroclinic sequences with many connected saddles could exist and form, in a wide area of
control parameter space, a stable heteroclinic channel – a stable heteroclinic flow (see right panel).

predict many dynamical phenomena in neural networks with excitatory and inhibitory synaptic connections including
information transmission and generation. The paradigm is called winnerless competition (WLC).

The study of competitive dynamics has a long tradition. Survival of the fittest is a cliché that is often associated
with the term competition. However, competition is not merely a means of determining the winner, as in a winner-
take-all network with attractor dynamics. It is also a multifunctional instrument that nature uses at all levels of the
neuronal hierarchy. Competition is also a mechanism that maintains the highest level of variability and stability of
neural dynamics, even under transient behaviors. Nonlinear dynamical theory has furnished the concept of stable
transients that are robust against noise, yet sensitive to external signals [48,31,49].

Stable transients, in fact, are a trajectory that is formed in the vicinity of a sequence of metastable states that are
connected by separatrices as we illustrate in Fig. 6. Under proper conditions, all trajectories in the neighborhood of
metastable states that form the chain remain in their vicinity, ensuring robustness and reproducibility over a wide range
of control parameters. This vicinity is called Stable Heteroclinic Channel (SHC). SHC is possibly the only dynamical
object that satisfies the dynamical principles of robustness and sensitivity in competitive world. During the last twenty
years there have been several efforts to explain sequence generation with attractor networks based on synaptic delay
and recurrent synaptic integration [50,51]. Some of such models provide interesting explanations but usually in very
specific contexts.

To understand the conditions of the stability of heteroclinic channels, we have to take into account that an elemen-
tary phase volume in the neighborhood of a saddle is compressed along the stable separatrices and it is stretched along
an unstable separatrix. Let us order the eigenvalues of the Jacobian at the i-th saddle point as:

λ
(i)
1 > 0 > Reλ

(i)
2 ! Reλ

(i)
3 ! · · · ! Reλ

(i)
d (1)

The number νi = −Reλ
(i)
2 /λ

(i)
1 is called the saddle value. If νi > 1 (the compressing is larger than the stretching),

the saddle is named as a dissipative saddle. Intuitively it is clear that the trajectories do not leave the heteroclinic
channel if all saddles in the heteroclinic chain are dissipative. A rigorous analysis of the structural stability of the
heteroclinic channel supports this intuition [20].

The temporal characteristics of transients are related to the exit problem for small random perturbations of dy-
namical systems with saddle sets. A local stability analysis in the vicinity of a saddle fixed point allows to estimate
the characteristic time that the system spends in the vicinity of the saddle as τ (p) = 1/λ

(i)
1 ln(1/|η|), where τ (p) is

the mean passage time, |η| is the level of noise, and λ
(i)
1 is the maximum eigenvalue corresponding to the unstable

separatrices of the saddle.
To fully understand such structurally stable transient dynamics, we need to further describe the mathematical image

of stable heteroclinic channels. Such dynamical objects are rare in low-dimensional systems, but common in complex
ones. A simple model to describe these objects is a generalized Lotka–Volterra equation, which expresses and predicts
the fate of an ongoing competition between N × M interactive neuronal modes:

CHAIN



Historical perspective

Applications to neuroscience dating back to the early 2000s by Rabinovich  
and collaborators, using heteroclinic chains (transients)

Models of intermittency in biology and physics dating back to the early 
80s (May-Leonard, Busse-Heikes)

Mathematical explorations dating back the work of dos Reis (70s),  
Guckenheimer and Holmes, Hofbauer and Sigmund (80s) 
see Krupa J. Nonl. Sci. 1997 for a review of early work

Recent review concerning neuroscience applications: Rabinovich et al,  
Physics of Life Reviews 2012
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Heteroclinic cycles in Hopfield networks
Chossat, K., J. Nonl. Sci. 2016

-we considered a Hopfield network with the pseudo-inverse learning rule

-we proved that this rule was well suited for storing robust chains/cycles

a cycle along the 
edges of [�1, 1]N

Question: can a similar learning rule be implemented by neurons?

Personnaz et al. Phys. Rev. A (1986)



A heteroclinic chain joining learned patterns with two active neurons

learned (stable) patterns:

structure of the chain

where

are saddle type steady states providing the mechanism of transition

⇠̂1 = (0, 1, 0, . . . , 0), ⇠̂2 = (0, 0, 1, 0 . . . , 0), . . . , ⇠̂P�1 = (0, . . . , 0, 1, 0)

⇠̂1 ⇠̂2 ⇠̂P�1

⇠1 ⇠2 . . . ⇠P

⇠1 = (1, 1, 0, . . . , 0), ⇠2 = (0, 1, 1, 0 . . . , 0) . . . ⇠P = (0, . . . , 0, 1, 1)

 Postulate: there are p = N � 1



Example continued
What can we say about the connectivity matrix J ? 

Using the postulated properties of the chain and the eigenvalue 
expressions we derive the following conditions:

These conditions are necessary but not sufficient

Conclusion for the application: in the present model chains are hard to find.

Note! The linearisation at the vertices of is diagonal
Hence explicit expressions for eigenvalues are available.

[0, 1]N

(i) Jmax

i,i+1

< Jmax

i+1,i+2

, i = 1, . . . n� 1 (upper diagonal elements are increasing)

(ii) I + � < Jmax

32

, I + 2� > Jmax

p,p+1

(iii) I + 2�+ µ < min

i=1,...,p
(Jmax

i,i + Jmax

i,i+1

), I + 2�+ µ < min

i=2,...,p+1

(Jmax

i,i + Jmax

i,i�1

).



A picture to keep in mind

This picture gives the idea behind the eigenvalue conditions:

The direction             must be weaker than the direction⇠i ! ⇠̂i ⇠̂i ! ⇠̂i+1

⇠̂1 ⇠̂2 ⇠̂P�1

⇠1 ⇠2 . . . ⇠P

⇠i ⇠i+1

⇠̂i
•

••

•

•

••
⇠i ⇠i+1

⇠̂i



Numerical example

4 Numerical examples

4.1 A case with five neurons and the extended network of 61 neurons

We consider

J

max

=

0

BBBB@

9 3 0 0 0

3 10 5 0 0

0 5 11 6 0

0 0 6 11 7

0 0 0 7 11

1

CCCCA
, (19)

with I = 0.3, � = 3.4, µ = 3.1, ⌧r = 400 and U = 0.01. This matrix and these parameter values meet
all conditions for the existence of a heteroclinic chain joining the patterns ⇠

1

= (1, 1, 0, 0, 0), . . . , ⇠

4

=

(0, 0, 0, 1, 1), however (19) does not follow from Hebbian rule. In figure 3 we show a simulation of a
chain of four states existing for the above parameters.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

t

 

 
x1

x2

x3

x4

x5

Figure 3: The chain of four patterns in the network of 5 neurons with the transition matrix (19) and the parameters
I = 0.3, � = 3.4, µ = 3.1, ⌧r = 400 and U = 0.01.

We extended this network to a network of 61 neurons with the connectivity matrix satisfying the
Hebbian rule using the approach described in Section 3. The details of the construction can be found in
Appendix B. Figure 4 shows a simulation for the required chain (34).

4.1.1 Sparsity of the extended network

Electrophysiological studies suggest that connectivity in the brain is sparse with only approximately
10% of pairs of neurons connected [102]; [103]; [104]; [96]; [105]; [106]. In the extended network ob-
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Simulation:

time in ms

n = 5, Jmax =

0

BBBB@

9 3 0 0 0
3 10 5 0 0
0 5 11 6 0
0 0 6 11 7
0 0 0 7 11

1

CCCCA
N = 5



Sufficient conditions using slow/fast approach

Intuition: the synaptic variables are slow compared to the firing rate 
               variables

To formalize this we set: " =
1

⌧ r
, ⇢ = ⌧rU

Now:

ṡk = "(1� (1 + ⇢xk)sk), k = 1, . . . , N

ẋk = xk(1� xk)

0

@�µxk � I � �

NX

j=1

xj +
NX

j=1

Jkjxj

1

A+ �

Within the slow-fast framework we can find necessary and sufficient  
conditions for the existence of heteroclinic chains



Slow-fast systems review

formulation formulation

critical



Slow manifolds

Theorem (Fenichel, Tikhonov, …)
If a segment of the reduced manifold is normally hyperbolic, then 
for           there exists a nearby slow manifold with the same stability." > 0

x

y

x

y



Non-hyperbolic points (dynamic bifurcations)
Slow flow can become unstable at non-hyperbolic points (dynamic bifurcations)

Example:  
       relaxation oscillation (fold points)

Example (relevant to our problem): 
       transcritical bifurcation

K., Szmolyan SIAM J. Math. Anal. 2001
K., Szmolyan Nonlinearity 2001

Slow-fast systems with noise: 
Berglund and Gentz, Springer 2006

K., Szmolyan JDE 2001

•

y

x

•

y

x



Analysis of the dynamics
(we assume the eigenvalue conditions stated earlier hold)

Earlier results restated in the slow-fast framework:

Using singular perturbation theory we can derive precise values at which 
the transcritical bifurcation occurs.

sk ⇡ 1
-each pattern                            defines a slow manifold which is of saddle  
type for 

-each pattern                             defines a slow manifold which is attracting  
for                             and loses stability in a transcritical bifurcation for  
smaller

(sk, sk+1) ⇡ (1, 1)
sk or sk+1

⇠k = (⇠k1 , . . . , ⇠
k
N )

⇠̂k = (⇠̂k1 , . . . , ⇠̂
k
N )



Lemma

Slow-fast analysis cont.

Idea of proof The slow flow is linear and can be solved explicitly.

Let                                               be the pairs of numbers defined by

Then, for each k = 1, . . . p� 1 the transcritical bifurcation is given by

(sB,1
k , sB,2

k ), k = 1, . . . p

The property of increasing diagonal elements, in practice, prevents the existence of long chains as the
large coefficients will activate the corresponding neurons just due to the presence of noise.

We use (12) to select the parameters for our numerical examples. For the details of the derivation of
the algebraic constraints we refer to Appendix A.

3.5 Conditions based on slow/fast dynamics

To take advantage of the fact that the synaptic variables si are slow compared to the firing rates we write
the equation for the si’s in the form

ṡi = "((1� si)� ⇢xisi), (13)

with
⇢ = ⌧rU and " =

1

⌧r
.

In this formulation the model has a time scale separation and ⇢ is a regular parameter.
The transitions ⇠

i ! ˆ

⇠

i ! ⇠

i+1 are governed by (2), which implies that as " ! 0 each one of them
lasts for an approximately constant positive amount of time. It follows that as " ! 0 the change in si in
the transition period tends to 0, that is si remains close to a constant value, approximated by bifurcation
points, corresponding to the loss of stability of ⇠i. These values can be derived in a recurrent manner as
follows:
(1) At t = 0 s

1

= s

2

= 1. Until the loss of stability of ⇠

1

it holds that x

1

⇡ 1 and x

2

⇡ 1. Hence, in
that period, we set: x

1

= x

2

= 1 and (13) becomes

ṡi = "(�(1 + ⇢)si + 1), (14)

where i = 1, 2. Since s

1

and s

2

have the same initial condition they remain equal. Using (6) we derive
that time when ⇠

1

loses stability is defined by:

I + µ + 2�I = J

11

s

1

(tB) + J

12

s

2

(tB).

Hence the bifurcation is given by the s

1

and s

2

values:

s

1

= s

B,1
1

=

I + µ + 2�

J

11

+ J

12

, s

2

= s

B,2
2

=

I + µ + 2�

J

11

+ J

12

.

(2) Assuming that s

2

does not change during the transition ⇠

1 ! ˆ

⇠

1 ! ⇠

2, at the beginning of the period
when the trajectory is near ⇠

2

, we have s

2

= s

B,2
1

and s

3

= 1. The evolution of (s
2

, s

3

) until the next
stability loss is (14) with i = 2, 3. Note that (14) is a linear equation and hence can be solved:

s

2

(t) = e

�"(1+⇢t)
(s

B,2
1

� 1) +

1

⇢ + 1

s

3

(t) = e

�"(1+⇢t) ⇢

1 + ⇢

+

1

1 + ⇢

.

(15)
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The property of increasing diagonal elements, in practice, prevents the existence of long chains as the
large coefficients will activate the corresponding neurons just due to the presence of noise.

We use (12) to select the parameters for our numerical examples. For the details of the derivation of
the algebraic constraints we refer to Appendix A.

3.5 Conditions based on slow/fast dynamics

To take advantage of the fact that the synaptic variables si are slow compared to the firing rates we write
the equation for the si’s in the form

ṡi = "((1� si)� ⇢xisi), (13)

with
⇢ = ⌧rU and " =

1

⌧r
.

In this formulation the model has a time scale separation and ⇢ is a regular parameter.
The transitions ⇠

i ! ˆ

⇠

i ! ⇠

i+1 are governed by (2), which implies that as " ! 0 each one of them
lasts for an approximately constant positive amount of time. It follows that as " ! 0 the change in si in
the transition period tends to 0, that is si remains close to a constant value, approximated by bifurcation
points, corresponding to the loss of stability of ⇠i. These values can be derived in a recurrent manner as
follows:
(1) At t = 0 s

1

= s

2

= 1. Until the loss of stability of ⇠

1

it holds that x

1

⇡ 1 and x

2

⇡ 1. Hence, in
that period, we set: x

1

= x

2

= 1 and (13) becomes

ṡi = "(�(1 + ⇢)si + 1), (14)

where i = 1, 2. Since s

1

and s

2

have the same initial condition they remain equal. Using (6) we derive
that time when ⇠

1

loses stability is defined by:

I + µ + 2�I = J

11

s

1

(tB) + J

12

s

2

(tB).

Hence the bifurcation is given by the s

1

and s

2

values:

s

1

= s

B,1
1

=

I + µ + 2�

J

11

+ J

12

, s

2

= s

B,2
2

=

I + µ + 2�

J

11

+ J

12

.

(2) Assuming that s

2

does not change during the transition ⇠

1 ! ˆ

⇠

1 ! ⇠

2, at the beginning of the period
when the trajectory is near ⇠

2

, we have s

2

= s

B,2
1

and s

3

= 1. The evolution of (s
2

, s

3

) until the next
stability loss is (14) with i = 2, 3. Note that (14) is a linear equation and hence can be solved:

s

2

(t) = e

�"(1+⇢t)
(s

B,2
1

� 1) +

1

⇢ + 1

s

3

(t) = e

�"(1+⇢t) ⇢

1 + ⇢

+

1

1 + ⇢

.

(15)
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By (6) we must now choose tB so that

I + µ + 2� = J

22

s

2

(tB) + J

23

s

3

(tB).

Hence the values of (s
2

, s

3

) corresponding to the point of the loss of stability of ⇠

2 are s

B,1
2

= s

2

(tB)

and s

B,2
2

= s

3

(tB). To obtain s

B,1
2

and s

B,2
2

we solve the linear system
0

B@
�(s

B,1
1

� 1

1+⇢) 1 0

� ⇢
1+⇢ 0 1

0 J

22

J

23

1

CA

0

@
FB,

s

B,1
2

s

B,2
2

1

A
=

0

@
1

1+⇢
1

1+⇢

I + µ + 2�

1

A
. (16)

with FB = e

�"(1+⇢)tB . The values of s

B,1
2

and s

B,2
2

can now be found by solving this linear equation
(the determinant of the matrix is easily shown to be non-zero).
(3) The process of the derivation of the bifurcation values is iterative. If s

B,2
k�1

is known then s

B,1
k and

s

B,2
k are obtained by solving the linear equation

0

B@
�(s

B,1
k�1

� 1

1+⇢) 1 0

� ⇢
1+⇢ 0 1

0 Jkk Jkk+1

1

CA

0

@
FB,

s

B,1
k

s

B,2
k

1

A
=

0

@
1

1+⇢
1

1+⇢

I + µ + 2�

1

A
. (17)

This calculation allows us to check for a given matrix J , if the specified heteroclinic chain exists for
sufficiently small ". The first set of conditions is

1 > s

B,j
i >

1

1 + ⇢

i = 1, . . . , P, j = 1, 2. (18)

The second set of conditions is obtained based on the requirement that, for each i = 1, 2, . . . , P , at the
ith bifurcation point the following properties hold:
• ⇠

i+1 must be stable,
• ˆ

⇠

i must be a saddle with the direction of ei stable (ei is the vector with ith component 1 and the other
components 0),
• ⇠

i must be stable in the direction of ei+1

.
Explicit conditions can be derived in an iterative manner using (6), in the sequel we do this numerically
in the context of specific examples. If these conditions are satisfied then a chain exists for sufficiently
small " and small noise. If the conditions are violated then the chain does not exist unless the noise is
large and the transitions are driven exclusively by noise.

3.6 Satisfying the Hebbian rule

Our results show that, given a small network, the parameters have to be tuned quite precisely to obtain
a heteroclinic chain. Adding the requirement that the matrix is obtained using the Hebbian rule gives an

12

sB,2
1sB,1

1

sk = sB,1
k , sk+1 = sB,2

k



Slow-fast analysis cont.

sk and sk+1

Theorem Assume:

(H1)

(H2) For each k = 1, . . . , p� 1 the conditions on eigenvalues, adapted
from the ones introduced earlier by substituting the             
values corresponding to the kth transcritical bifurcation, are
satisfied.

Then for " and � sufficiently small there exists an open set of initial
conditions such that the corresponding trajectories follow the

heteroclinic chain, as specified earlier.
⇠̂1 ⇠̂2 ⇠̂P�1

⇠1 ⇠2 . . . ⇠P

1 > sB,1
k >

1

1 + ⇢
, k = 1, . . . p� 1



Slow-fast analysis cont.

Idea of proof
The eigenvalue with the precise values of sk and sk+1

guarantee the correct sequence of fast dynamics to pass to the next

slow manifold.

There is no delay phenomenon, due to noise.

(1)

(2) Berglund and Gentz, Springer 2006



New idea - transition through neutrally stable points

where

are neutrally stable steady states providing the mechanism of transition

⇠̂1 = (0, 1, 0, . . . , 0), ⇠̂2 = (0, 0, 1, 0 . . . , 0), . . . , ⇠̂P�1 = (0, . . . , 0, 1, 0)

⇠̂1 ⇠̂2 ⇠̂P�1

⇠1 ⇠2 . . . ⇠P



Suitable connectivity matrix

..
.

..
.

..
.

J =

0

BBBBBBBBBB@

1 1 0 0 0 . . . 0
1 2 1 0 0 . . . 0
0 1 2 1 0 . . . 0

0 . . . 0 1 2 1 0
0 . . . 0 0 1 2 1
0 . . . 0 0 0 1 1

1

CCCCCCCCCCA

..
.

..
.

J is matrix derived from the Hebbian rule: Jij =
N�1X

k=1

⇠ki ⇠
k
j

based on the learned patterns ⇠1, ⇠2, . . . , ⇠N�1



Dynamics of the fast system in the plane {x2 = 1, xk = 0, k � 4}

before the dynamic bifurcation after the dynamic bifurcation

x1 x3



Results

1

⇢+ 1
< I + � < 1 < I + 2�, I + 2�+ µ < 2

((I + �)(1 + ⇢)� 1)2 + ⇢

⇢(⇢+ 1)
< µ+ � < 1

Coefficient conditions

Theorem All trajectories starting within O(1) of ⇠k are attracted to  ⇠̂k

but pass  close  to ⇠k+1O(")

Conclusion A noisy trajectory is a chain



Excitable cycles/chains
Ashwin and Postelthwaite JNLS 2016

Passage past the saddle sink pair occurs through the action of noise



Simulation
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Goals

Which case is more relevant biologically?

Is there a way to connect the two cases?

Understand better the excitable case and its perturbations

Understand the role of noise and the noisy dynamics
Any noise annoys an oyster but a noisy oyster annoys an oyster most

Look at more general examples



Happy Birthday Jean-Marc!


