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Motivation

Attractor network models: concepts are represented as attracting steady states

Latching dynamics: sequential activation of concepts. A possible mechanism allowing for
transition from one state to the next is fast synaptic depression.

-the system converges to a stable steady state, corresponding to a concept maintained as
a long transient by mutual activation of neurons

- these states are only transiently stable and lose stability due to synaptic depression

- the trajectory converges to the next steady state Treves, Cognitive Neuropsych. (20095)

Priming: the ability of the brain to more quickly activate a target concept in response to a
related stimulus (prime) CAT —> DOG

-in our model prime-target relations are reflected by non-zero entries in the connectivity matrix
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Synaptic depression:

Synaptic depression refers to the weakening of the synaptic o :
transmission caused by the depletion of the synaptic resources \N:\M o
Tsodyks and Markram, PNAS (1997) - -




Our model
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r; - firing rate variable, x; € [0, 1]
s; - synaptic variable, s; € [0, 1]
(J;;) - matrix of excitatory connections, J;; > 0

o is a noise term adapted to preserve the invariance of the cube [0, 1]*

. The excitatory connections weaken while a neuron Is active.



Latching dynamics and heteroclinic chains

Recall:

-the learned patterns are some of the vertices of the cube [0, 1]
-the spaces defined by z; =0 or z; =1 are invariant

-hence latching dynamics must follow the invariant spaces

We study heteroclinic chains as a model of latching dynamics.



Robust Heteroclinic Chains/Cycles/Networks
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- robust for structure preserving perturbations (inv. planes or symmetry)
- cycles/chains can be dynamically attracting

- weak breaking of the structure = trajectories shadow cycle/chain
- noise = random distribution of passage times

- between may exist



Historical perspective

Models of intermittency in biology and physics dating back to the early
80s (May-Leonard, Busse-Heikes)

Applications to neuroscience dating back to the early 2000s by Rabinovich
and collaborators, using heteroclinic chains (transients)

explorations dating back the work of (70s),
Guckenheimer and Holmes, Hofbauer and Sigmund (80s)
see Krupa J. Nonl. Sci. 1997 for a review of early work

Recent review concerning neuroscience applications: Rabinovich et al,
Physics of Life Reviews 2012



Heteroclinic cycles in Hopfield networks
Chossat, K., J. Nonl. Sci. 2016

-we considered a Hopfield network with the pseudo-inverse learning rule
Personnaz et al. Phys. Rev. A ?1986)

-we proved that this rule was well suited for storing robust chains/cycles

a cycle along the
edges of [-1,1]"

Question: can a similar learning rule be implemented by neurons?



A heteroclinic chain joining learned patterns with two active neurons

- there are p = N — 1 learned (stable) patterns:

¢t =(1,1,0,...,0), £2=(0,1,1,0...,0) ... £ =(0,...,0,1,1)

structure of the chain
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where

£ =1(0,1,0,...,0), €2 =1(0,0,1,0...,0),...,6" 1 =(0,...,0,1,0)

are saddle type steady states providing the mechanism of transition



Example continued

What can we say about the connectivity matrix J ?

Note! The linearisation at the vertices of |0, 1]N IS diagonal
Hence explicit expressions for eigenvalues are available.

Using the postulated properties of the chain and the eigenvalue
expressions we derive the following conditions:

() J,

[/

() IT+A<Jzg , IT+2XA>J, 4

1—=1,...,pD >

i1 <Jiv1440,1=1,...n—1 (upper diagonal elements are increasing)

These conditions are necessary but not sufficient

Conclusion for the application: in the present model chains are hard to find.
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This picture gives the idea behind the eigenvalue conditions:
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Numerical example

9 3 0 0 0
3 10 5 0 0
J* =10 5 11 6 0 N =5
0 0 6 11 7
o 0 0 7 11
1 L1
L2
£z 3
Simulation: 08F .
X5

0.6

04r

027

A e oncpatha
\ “'\“ Am. ¥ WA\ SER Y
O Y D O P

0 50 100 150 »00 tIme in ms




Sufficient conditions using slow/fast approach

Intuition: the synaptic variables are slow compared to the firing rate

variables
To formalize this we set: e — 1 0 =1.U
7'7“’
Now: N N
T = xp(l —xg) | —par — 1 — )\Zaﬁj +Zkamj + o
j=1 j=1

Skze(l—(l—l—pa:k)sk), k=1,...,N

Within the slow-fast framework we can find necessary and sufficient
conditions for the existence of heteroclinic chains



Slow-fast systems review

cex = f(x,y) ' = f(z,y)
Yy =g(x,y) reR" yeR™ y' = eg(x,y)

Oth order approximations are given by:

f(z,y) =0 z' = f(z,y)
y — g(l’,y) y, — O’

e The set Sy = {(x,y) : f(x,y) = 0} is called the critical

manifold.
e 5) is the phase space for the reduced problem and the set

of equlibria for the layer problem.



Slow manifolds
z' = f(z,y)
y' =eg(z,y)
Theorem (Fenichel, Tikhonoy, ...)

If a segment of the reduced manifold is normally hyperbolic, then
for ¢ > 0 there exists a nearby slow manifold with the same stabillity.

y y




Non-hyperbolic points (dynamic bifurcations)

Slow flow can become unstable at non-hyperbolic points (dynamic bifurcations)
y

Example:
relaxation oscillation (fold points)
K., Szmolyan JDE 2001

Example (relevant to our problem):

transcritical bifurcation
K., Szmolyan SIAM J. Math. Anal. 2001

K., Szmolyan Nonlinearity 2001

Slow-fast systems with noise:
Berglund and Gentz, Springer 2006




Analysis of the dynamics

(we assume the eigenvalue conditions stated earlier hold)
Earlier results restated in the slow-fast framework:

-each pattern ¢" = (¢7,...,¢%) defines a slow manifold which is attracting
for (sk,sk+1) ~ (1,1) and loses stability in a transcritical bifurcation for
smaller sg or Sg41

-each pattern ¢ = (¢F,... . &%) defines a slow manifold which is of saddle

type for s~ 1

Using singular perturbation theory we can derive precise values at which
the transcritical bifurcation occurs.



Slow-fast analysis cont.

B,1 B2 . .
Lemma Let (s, s.°°), k=1,...p be the pairs of numbers defined by
B,1 I+ u+2A B2 I+ pu+2A\
J11 + J1o J11 + J12

e
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Then, foreach £ =1,...p — 1 the transcritical bifurcation is given by

_I_b

. B B2

Idea of proof The slow flow is linear and can be solved explicitly.




Slow-fast analysis cont.

Theorem Assume:

1
(H1) 1>sf»1>1 k=1,...p—1

(H2) Foreach k£ =1,...,p— 1 the conditions on eigenvalues, adapted
from the ones introduced earlier by substituting the sx and si41

values corresponding to the kth transcritical bifurcation, are
satisfied.

Then for ¢ and o sufficiently small there exists an open set of initial
conditions such that the corresponding trajectorles follow the
heteroclinic chain, as specified earlier. \ - \ / \ /'




Slow-fast analysis cont.

ldea of proof
(1) The eigenvalue with the precise values of si and sj41
guarantee the correct sequence of fast dynamics to pass to the next

slow manifold.

(2) There is no delay phenomenon, due to noise. Berglund and Gentz, Springer 2006



New idea - transition through neutrally stable points
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where

£ =1(0,1,0,...,0), €2 =1(0,0,1,0...,0),...,6" 1 =(0,...,0,1,0)

are steady states providing the mechanism of transition



Suitable connectivity matrix
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Dynamics of the fast system in the plane {z2 =1, 2, =0, k > 4}
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before the dynamic bifurcation after the dynamic bifurcation



Results

.. . 1
Coefficient conditions <THAN<1I<ITH+2N, TH4+224+pu<?2

p+1

(L+NA+p)—1)*+p
p(p+1)

<pu+ A<l

Theorem All trajectories starting within O(71) of &, are attracted to &
but pass O(¢) close to k1

Conclusion A noisy trajectory is a chain



Excitable cycles/chains
Ashwin and Postelthwaite JNLS 2016

Passage past the saddle sink pair occurs through the action of noise



Simulation
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Goals

Understand better the excitable case and its perturbations

Understand the role of noise and the noisy dynamics

Any noise annoys an oyster but a noisy oyster annoys an oyster most

Is there a way to connect the two cases?
Which case is more relevant biologically?

Look at more general examples



Happy Birthday Jean-Marc!



