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Vision processing by the brain: a complex system

How does the brain process input signal from the retina to give a global and as
much as possible coherent representation of the outer world (the ”Gestalt”)?

Indeed, informations from retina → visual cortex are essentially local...

Examples:

Illusory contours

Visual hallucinations
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Outline of the talk

1 Functional architecture of the primary visual cortex.
- rough sketch of the best studied feature detected by the visual cortex
and its geometrical interpretation: contour detection.
- much more detailed and extended presentation is the book by Jean
Petitot Elements of Neurogeometry, Springer 2017.

2 Application to the spontaneous activity of the primary visual cortex
(geometric hallucinations).
A quick overview of the theory by Paul Bressloff et al (2000).

3 Extending 1 and 2 to more features: the ”hyperbolic” model.
A recent attempt to incorporate more features to the ring model by
replacing ”orientation” with ”structure tensor” (Gregory Faye’s thesis,
Inria 2013) → pattern formation problem in the hyperbolic plane.
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The neuron, basic unit of the cortical complex system

- Neurons are active units, which
emit spike trains along axon
when input exceeds a threshold

- Synapses are either excitatory
(green) or inhibitory (red)

In a specific brain area there are millions of neurons.

It is relevant to consider space and time averages of the activity →
continuous time evolution of neural fields (as measured in ECG, FMRI).
Then ”neuron” means in fact ”population of neurons”.

Synaptic plasticity allows reconfiguration of circuitry at various time
scales (long-term and short-term learning, adaptation..).
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Global structure of the visual cortex in primates

Signal generated on retina is transmitted
to the primary visual area V 1 after
filtering (smoothing) in the LGN.
Then forwarded to other areas V 2,V 3...

Each neuron in V 1 responds to a local
receptive field in the visual field VF where
it detects orientation, contrast, spatial
frequency, ocular dominance...

Typical receptive profile ϕ of a neuron in V 1:

It filters the signal I (x , y) at a spatial scale with
a local orientation: Iϕ = I ∗ϕ (for example ϕ =
∂2

xG , G(x , y) Gauss function).
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Retinotopy

Small patches in the visual field VF are mapped to small patches in V 1
according to a roughly log(z) law (z ∈ C ' VF).

This retinotopic map VF → V 1 is an approximately conformal map.
The fovea is mapped to a large domain in V 1.

Retinotopic map for a macaque
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Columnar stucture of V1 (Hubel & Wiesel 1960’s)

1 They got the Nobel prize in physiology (1981) for this discovery..

2 V 1 is composed of six ”horizontal” layers. Experiments show:

- Neurons in a vertical column detect
the same orientation, except at singular
columns called pinwheels where all
orientations are present.
- Neurons in adjacent columns detect
different orientations by steps of ∼ 10◦.

3 The patch of adjacent columns surrounding a pinwheel defines a
hypercolumn (∼ 0.6mm2), in which neurons respond to the same location
in retina but to different orientations.

4 Other features are engrafted in hypercolumns: contrast, spatial frequency,
ocular dominance, that could be accounted for as well.
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Hypercolumnar crystalline structure of V 1

(i) Diametrically opposite rays correspond to
orientations differing by π/2.

(ii) Pinwheels form a crystal lattice on V 1 .

(iii) Iso-orientation lines define a field of
orientations, of which pinwheels are singular
points.

(iv) Tempting to idealize the hypercolumnar
structure by a fiber bundle structure R × P1:
R = retinal field (base plane) and fiber = set of
orientations ' projective line.

This can be justified to some extent by
blowing-up the pinwheel singularities (see
Petitot’s book)
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The fiber bundle V 1 as an efficient detector of contours

Let γ be a curve in R ' R2 with tangent angle θ at (x , y).
γ lifts to the curve Γ = {(x , y , θ)} in R × P1 ' R × S1 (θ ∈ [0, π)).

This allows to replace the evaluation of dy/dx at each (x , y) ∈ γ by the
selection of a point in the fiber bundle: much more efficient!

Γ is the lift of a curve in R if any tangent vector to Γ belongs to the
kernel of the differential 1-form ω = cos(θ)dy − sin(θ)dx .

kerω defines a distribution of planes (called horizontal) in T (R × S1),
spanned at each point (x , y , θ) by cos(θ)∂x + sin(θ)∂y and ∂θ.

Note that this distribution of horizontal planes (contact structure) is not
the enveloppe of a surface in R × S1 (it dos not satisfy Froebenius
condition ω ∧ dω = 0). It is devoted to path (contour) integration.

It is tempting to say that pinwheels and their iso-orientation rays represent a
discrete neural implementation of this contact structure.

But how does the brain proceed to compare orientations at remote points in R?

Pascal Chossat 28 / 93



The fiber bundle V 1 as an efficient detector of contours

Let γ be a curve in R ' R2 with tangent angle θ at (x , y).
γ lifts to the curve Γ = {(x , y , θ)} in R × P1 ' R × S1 (θ ∈ [0, π)).

This allows to replace the evaluation of dy/dx at each (x , y) ∈ γ by the
selection of a point in the fiber bundle: much more efficient!

Γ is the lift of a curve in R if any tangent vector to Γ belongs to the
kernel of the differential 1-form ω = cos(θ)dy − sin(θ)dx .

kerω defines a distribution of planes (called horizontal) in T (R × S1),
spanned at each point (x , y , θ) by cos(θ)∂x + sin(θ)∂y and ∂θ.

Note that this distribution of horizontal planes (contact structure) is not
the enveloppe of a surface in R × S1 (it dos not satisfy Froebenius
condition ω ∧ dω = 0). It is devoted to path (contour) integration.

It is tempting to say that pinwheels and their iso-orientation rays represent a
discrete neural implementation of this contact structure.

But how does the brain proceed to compare orientations at remote points in R?

Pascal Chossat 29 / 93



The fiber bundle V 1 as an efficient detector of contours

Let γ be a curve in R ' R2 with tangent angle θ at (x , y).
γ lifts to the curve Γ = {(x , y , θ)} in R × P1 ' R × S1 (θ ∈ [0, π)).

This allows to replace the evaluation of dy/dx at each (x , y) ∈ γ by the
selection of a point in the fiber bundle: much more efficient!

Γ is the lift of a curve in R if any tangent vector to Γ belongs to the
kernel of the differential 1-form ω = cos(θ)dy − sin(θ)dx .

kerω defines a distribution of planes (called horizontal) in T (R × S1),
spanned at each point (x , y , θ) by cos(θ)∂x + sin(θ)∂y and ∂θ.

Note that this distribution of horizontal planes (contact structure) is not
the enveloppe of a surface in R × S1 (it dos not satisfy Froebenius
condition ω ∧ dω = 0). It is devoted to path (contour) integration.

It is tempting to say that pinwheels and their iso-orientation rays represent a
discrete neural implementation of this contact structure.

But how does the brain proceed to compare orientations at remote points in R?

Pascal Chossat 30 / 93



The fiber bundle V 1 as an efficient detector of contours

Let γ be a curve in R ' R2 with tangent angle θ at (x , y).
γ lifts to the curve Γ = {(x , y , θ)} in R × P1 ' R × S1 (θ ∈ [0, π)).

This allows to replace the evaluation of dy/dx at each (x , y) ∈ γ by the
selection of a point in the fiber bundle: much more efficient!

Γ is the lift of a curve in R if any tangent vector to Γ belongs to the
kernel of the differential 1-form ω = cos(θ)dy − sin(θ)dx .

kerω defines a distribution of planes (called horizontal) in T (R × S1),
spanned at each point (x , y , θ) by cos(θ)∂x + sin(θ)∂y and ∂θ.

Note that this distribution of horizontal planes (contact structure) is not
the enveloppe of a surface in R × S1 (it dos not satisfy Froebenius
condition ω ∧ dω = 0). It is devoted to path (contour) integration.

It is tempting to say that pinwheels and their iso-orientation rays represent a
discrete neural implementation of this contact structure.

But how does the brain proceed to compare orientations at remote points in R?

Pascal Chossat 31 / 93



The fiber bundle V 1 as an efficient detector of contours

Let γ be a curve in R ' R2 with tangent angle θ at (x , y).
γ lifts to the curve Γ = {(x , y , θ)} in R × P1 ' R × S1 (θ ∈ [0, π)).

This allows to replace the evaluation of dy/dx at each (x , y) ∈ γ by the
selection of a point in the fiber bundle: much more efficient!

Γ is the lift of a curve in R if any tangent vector to Γ belongs to the
kernel of the differential 1-form ω = cos(θ)dy − sin(θ)dx .

kerω defines a distribution of planes (called horizontal) in T (R × S1),
spanned at each point (x , y , θ) by cos(θ)∂x + sin(θ)∂y and ∂θ.

Note that this distribution of horizontal planes (contact structure) is not
the enveloppe of a surface in R × S1 (it dos not satisfy Froebenius
condition ω ∧ dω = 0). It is devoted to path (contour) integration.

It is tempting to say that pinwheels and their iso-orientation rays represent a
discrete neural implementation of this contact structure.

But how does the brain proceed to compare orientations at remote points in R?

Pascal Chossat 32 / 93



Long-range horizontal connections in V 1

Experiments show:
(i) Neurons with long-range axons connect preferentially to neurons with the
same orientation in other hypercolumns.

(ii) Coaxiality: the path of connections tends to be aligned with orientation.

In contrast, note that within the hypercolumn the field of connections looks

quite isotropic: it equally reaches all orientations.
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V 1 as the Lie group of displacements in the plane

SE(2) = R2 n SO(2) is the Lie group of rigid displacements in the plane,
with product (t, rφ) · (t′, rφ′) = (t + rφt′, rφ+φ′).

SE(2) is the principal bundle associated with R ×P1: R2 ' SE(2)/SO(2).

Then ω is invariant under the action of SE(2) on T (R2 × SO(2)): any
two horizontal planes in R2 × SO(2) can be equivariantly identified by a
suitable displacement.

The distribution of horizontal planes realizes a connection in R × SO(2),
allowing for parallel transport, covariant derivation...

The long-range connections in V 1 implement these contact structure and
connection.

Application to illusory contours: minimize distance in the subriemannian
metric defined by the horizontal planes in the fiber bundle (Citti & Sarti,
Petitot 2003).

The SE(2) equivariant structure is also fundamental to the problem of
visual hallucinations as we shall see next...
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Geometric hallucinations as a spontaneous activity in V 1

Various types of non optical stimulation of the brain can induce visual
hallucinatory patterns. Examples under marijuana or LSD:

(from Bressloff et al 2001)
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The ”ring model” of Bressloff, Cowan, Golubitsky

Wilson-Cowan equation for the averaged action potential a of neural field:

(∗) da(x, θ, t)

dt
= −a(x, θ, t) +

Z
R2

Z π

0

w(x, θ; x′, θ′)S(a(x′, θ′, t))dθ′dx′ + Iext

S = sigmoid function, S(0) = 0, S ′(0) = µ (bifurcation parameter).
Iext = 0 (no external input), w = synaptic strength between neurons.

The contact structure of V 1 must be encoded in the function w :

w(x, θ; x′, θ′) = wloc(θ, θ
′) + βwlat(x, θ; x

′, θ′) (β = relative strength of
loc and lat connections).

Local connections: wloc = g(|θ − θ′|), π-periodic.

Long range connections: wlat = h(‖x− x′‖)δ(r−θ[x− x′] · e2)δ(θ − θ′)
where h is a difference of Gaussian functions (empirical approx.).

Remarks
1. a = 0 is the basic state, stable if µ is small enough.

2. Eq. (∗) is invariant under all isometries in R2 × S1: group E(2) generated by

SE(2) and the reflection (κx,−θ).
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Sketch of the bifurcation analysis (“à la Turing”)

1 Linear stability of a = 0: Fourier and perturbation analysis of
σa = −a + µw ∗ a (w = wloc + βwlat , β << 1).
Critical modes with wavelength kc are activated at µ = µc .

2 Look for spatially periodic solutions: invariant under translations on a
periodic lattice L ' Z2 ⇒ compact domain R2/L ' T2 and compact
symmetry group G ' Dm n R2/Z2 where m = 2 (rhombic lattice), 4
(square lattice) or 6 (hexagonal lattice).

3 Critical eigenfunctions ψj = u(θ)e±ikj ·x with u(θ) = u(θ + π) and

4 Remark: the cases u(θ) = ±u(−θ) (scalar field or pseudoscalar field) can
occur. They lead to different bifurcation diagrams (see B-Vivancos, C. &
Melbourne 1994).
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Hallucinations as retinotopic images of bifurcated patterns
in V 1

Equivariant bifurcation theory applies and leads to classification of bifurcated
states w.r.t. residual symmetry (isotropy).

At first order aµ(x, θ) ∼
P

zj(µ)ψj + c.c.

Examples
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Extending the model: V 1 as a structure tensor processor

To improve the ”ring model” O. Faugeras and P.C. (Plos Comp Bio 2009)
assumed that neurons are sensitive to the structure tensor of the image
intensity, which is known to be a good detector for image textures.

This model was studied in a series of papers with Gregory Faye (CNRS, U. of
Toulouse), see his thesis on tel.archives-ouvertes.fr.

Next I introduce the model and its main features.

In the last part of the talk I will show how this leads to a problem of pattern

formation in the hyperbolic plane and how this was tackled.

Pascal Chossat 54 / 93



Extending the model: V 1 as a structure tensor processor

To improve the ”ring model” O. Faugeras and P.C. (Plos Comp Bio 2009)
assumed that neurons are sensitive to the structure tensor of the image
intensity, which is known to be a good detector for image textures.

This model was studied in a series of papers with Gregory Faye (CNRS, U. of
Toulouse), see his thesis on tel.archives-ouvertes.fr.

Next I introduce the model and its main features.

In the last part of the talk I will show how this leads to a problem of pattern

formation in the hyperbolic plane and how this was tackled.

Pascal Chossat 55 / 93



Extending the model: V 1 as a structure tensor processor

To improve the ”ring model” O. Faugeras and P.C. (Plos Comp Bio 2009)
assumed that neurons are sensitive to the structure tensor of the image
intensity, which is known to be a good detector for image textures.

This model was studied in a series of papers with Gregory Faye (CNRS, U. of
Toulouse), see his thesis on tel.archives-ouvertes.fr.

Next I introduce the model and its main features.

In the last part of the talk I will show how this leads to a problem of pattern

formation in the hyperbolic plane and how this was tackled.

Pascal Chossat 56 / 93



The structure tensor as a texture detector

Let gσ(x , y) = 1
2πσ2

1
exp(−(x2 + y 2)/2σ2).

For the image intensity I (x , y) we set Iσ1 = I ∗ gσ1 .

The structure tensor of the image is the matrix

T (x , y) = gσ2 ∗
“
∇Iσ1∇

T Iσ1

”
σ2 defines the characteristic size of the texture to be represented.

T is a symmetric positive definite matrix: {T } ' SPD(2).

This object was introduced in computer vision as a local descriptor for edges,
corners and contrast of images.

We shall assume that structure tensors are encoded in the hypercolumns of V 1,
so that V 1 ' R2 × SPD(2).

How does this improve the orientation model, and is it a natural assumption?
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Basic properties of the structure tensor

T has two real eigenvalues: λ1 ≥ λ2 > 0 with eigenvectors e1 ⊥ e2.

Elementary algebra shows T = (λ1 − λ2)e1e
T
1 + λ2I2.

λ1 ≈ λ2 ⇒ isotropic image

λ1 � λ2 ≈ 0 ⇒ straight edge
along e2

λ1 ≥ λ2 � 0 ⇒ corner

the size of λj defines the contrast
along ej

the ellipse xT xT = 1

a =
√

λ1, b =
√

λ2

Let e2 = (r cos θ, r sin θ), θ defines the preferred orientation of the neuron.
Note that T is invariant under θ → θ + π.

In the limit λ2 = 0 one recovers the ring model + the contrast along e1.

There are some biological arguments supporting this model for V 1 (but

experimental confirmation is missing).
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Riemannian geometry on the set of structure tensors

SPD(2) ' Q+ = space of positive definite quadratic forms xT xT in R2.

It is natural to take the metric on SPD(2) such that changes of coordinates in
Q+ leave distances invariant.

The following formulation is equivalent and more convenient for our purpose:

T = ∆ eT where det eT = 1. It follows that SPD(2) = R+
∗ × SSPD(2).

Now, SSPD(2) ' Lorentz surface H2 ' Poincaré disc D = {z ∈ C, |z | < 1}
(by a suitable stereographic projection,) so that SPD(2) ' R+

∗ × D.

This provides us with a metric on SPD(2), for which the distance is

d(T , T ′) =

s
2 log2(

∆

∆′ ) + artanh2 |z − z ′|
|1− z̄z ′|

The isometry group is now R+
∗ × U(1, 1), where U(1, 1) acts on D by

γz =
αz + β

β̄z + ᾱ
, |α|2 − |β|2 = 1, and reflection κz = z̄ .
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, |α|2 − |β|2 = 1, and reflection κz = z̄ .

Pascal Chossat 70 / 93



Riemannian geometry on the set of structure tensors

SPD(2) ' Q+ = space of positive definite quadratic forms xT xT in R2.

It is natural to take the metric on SPD(2) such that changes of coordinates in
Q+ leave distances invariant.

The following formulation is equivalent and more convenient for our purpose:

T = ∆ eT where det eT = 1. It follows that SPD(2) = R+
∗ × SSPD(2).

Now, SSPD(2) ' Lorentz surface H2 ' Poincaré disc D = {z ∈ C, |z | < 1}
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Implementation of the structure tensor formalism in the
analysis of spontaneous activity in V 1

V 1 ' R2 × R+
∗ × D considered as a fiber bundle over R2.

Taking fibers R+
∗ × D makes analysis considerably more difficult than S1.

First step: suppose isolated hypercolumns and discard the R+
∗ component.

This leads to the problem of bifurcation of patterns in D, or equivalently
in the hyperbolic plane.

In the context of parabolic PDEs in D, see my paper with G. Faye:

Pattern formation for the Swift-Hohenberg equation on the hyperbolic
plane, J. Dyn & Diff Eqs, Online First (2013).

For an attempt to treat the ”spatialized” system (extended to R2), see
my paper with G. Faye in J. Networks & Heterogeneous Media, 2013.

Pascal Chossat 72 / 93



Implementation of the structure tensor formalism in the
analysis of spontaneous activity in V 1

V 1 ' R2 × R+
∗ × D considered as a fiber bundle over R2.

Taking fibers R+
∗ × D makes analysis considerably more difficult than S1.

First step: suppose isolated hypercolumns and discard the R+
∗ component.

This leads to the problem of bifurcation of patterns in D, or equivalently
in the hyperbolic plane.

In the context of parabolic PDEs in D, see my paper with G. Faye:

Pattern formation for the Swift-Hohenberg equation on the hyperbolic
plane, J. Dyn & Diff Eqs, Online First (2013).

For an attempt to treat the ”spatialized” system (extended to R2), see
my paper with G. Faye in J. Networks & Heterogeneous Media, 2013.

Pascal Chossat 73 / 93



Implementation of the structure tensor formalism in the
analysis of spontaneous activity in V 1

V 1 ' R2 × R+
∗ × D considered as a fiber bundle over R2.

Taking fibers R+
∗ × D makes analysis considerably more difficult than S1.

First step: suppose isolated hypercolumns and discard the R+
∗ component.

This leads to the problem of bifurcation of patterns in D, or equivalently
in the hyperbolic plane.

In the context of parabolic PDEs in D, see my paper with G. Faye:

Pattern formation for the Swift-Hohenberg equation on the hyperbolic
plane, J. Dyn & Diff Eqs, Online First (2013).

For an attempt to treat the ”spatialized” system (extended to R2), see
my paper with G. Faye in J. Networks & Heterogeneous Media, 2013.

Pascal Chossat 74 / 93



Implementation of the structure tensor formalism in the
analysis of spontaneous activity in V 1

V 1 ' R2 × R+
∗ × D considered as a fiber bundle over R2.

Taking fibers R+
∗ × D makes analysis considerably more difficult than S1.

First step: suppose isolated hypercolumns and discard the R+
∗ component.

This leads to the problem of bifurcation of patterns in D, or equivalently
in the hyperbolic plane.

In the context of parabolic PDEs in D, see my paper with G. Faye:

Pattern formation for the Swift-Hohenberg equation on the hyperbolic
plane, J. Dyn & Diff Eqs, Online First (2013).

For an attempt to treat the ”spatialized” system (extended to R2), see
my paper with G. Faye in J. Networks & Heterogeneous Media, 2013.

Pascal Chossat 75 / 93



Implementation of the structure tensor formalism in the
analysis of spontaneous activity in V 1

V 1 ' R2 × R+
∗ × D considered as a fiber bundle over R2.

Taking fibers R+
∗ × D makes analysis considerably more difficult than S1.

First step: suppose isolated hypercolumns and discard the R+
∗ component.

This leads to the problem of bifurcation of patterns in D, or equivalently
in the hyperbolic plane.

In the context of parabolic PDEs in D, see my paper with G. Faye:

Pattern formation for the Swift-Hohenberg equation on the hyperbolic
plane, J. Dyn & Diff Eqs, Online First (2013).

For an attempt to treat the ”spatialized” system (extended to R2), see
my paper with G. Faye in J. Networks & Heterogeneous Media, 2013.

Pascal Chossat 76 / 93



Implementation of the structure tensor formalism in the
analysis of spontaneous activity in V 1

V 1 ' R2 × R+
∗ × D considered as a fiber bundle over R2.

Taking fibers R+
∗ × D makes analysis considerably more difficult than S1.

First step: suppose isolated hypercolumns and discard the R+
∗ component.

This leads to the problem of bifurcation of patterns in D, or equivalently
in the hyperbolic plane.

In the context of parabolic PDEs in D, see my paper with G. Faye:

Pattern formation for the Swift-Hohenberg equation on the hyperbolic
plane, J. Dyn & Diff Eqs, Online First (2013).

For an attempt to treat the ”spatialized” system (extended to R2), see
my paper with G. Faye in J. Networks & Heterogeneous Media, 2013.

Pascal Chossat 77 / 93



Implementation of the structure tensor formalism in the
analysis of spontaneous activity in V 1

V 1 ' R2 × R+
∗ × D considered as a fiber bundle over R2.

Taking fibers R+
∗ × D makes analysis considerably more difficult than S1.

First step: suppose isolated hypercolumns and discard the R+
∗ component.

This leads to the problem of bifurcation of patterns in D, or equivalently
in the hyperbolic plane.

In the context of parabolic PDEs in D, see my paper with G. Faye:

Pattern formation for the Swift-Hohenberg equation on the hyperbolic
plane, J. Dyn & Diff Eqs, Online First (2013).

For an attempt to treat the ”spatialized” system (extended to R2), see
my paper with G. Faye in J. Networks & Heterogeneous Media, 2013.

Pascal Chossat 78 / 93



Harmonic and spectral analysis in D

Subgroup of direct isometries (displacements) in U(1, 1): pseudo-unitary
group SU(1, 1) acting in D by γz = αz+β

β̄z+ᾱ
, |α|2 − |β|2 = 1.

Iwasawa Theorem: SU(1, 1) = KAN were K , A, N are 1-parameter
subgroups with orbits

rotations hyperbolic boosts parabolic transformations

Harmonic analysis in D (Fourier-Helgason): based on elementary

eigenfunctions eρ,b(z) = e(iρ+ 1
2
)〈z,b〉, ρ ∈ C, where b ∈ ∂D and 〈z , b〉 is a

distance built from horocycle based at b and passing by z .
It satisfies −4D eρ,b = (ρ2 + 1

4
)eρ,b.

It allows to build a ”Fourier transform” in D → spectral analysis.
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Periodic pattern formation in the Poincaré disc (sketch)

Let Γ ⊂ SU(1, 1) be a discrete subgroup which tiles D from a compact
fundamental domain FΓ (polygon).
Then Γ is spanned by a finite number of hyperbolic boosts.
Γ is called a cocompact Fuchsian (or lattice ) group.

D/Γ ' compact Riemann surface of genus g ≥ 2 (a torus with g holes).
' polygon FΓ with opposite sides identified by periodicity.

The U(1, 1)-invariant equation projects onto D/Γ to a GΓ-invariant
equation where GΓ is the symmetry group of FΓ (seen as a g -torus).

GΓ is a finite group → finite dimensional irreducible representations.
Hence standard techniques (center manifold theorem) apply to reduce the
bifurcation problem to one in a finite dimensional space (irrep of GΓ).

For a given Γ the area of a fundamental region is fixed (by Gauss-Bonnet
formula) → no scale equivalence between lattices as in Euclidean plane.

There are an infinite number of lattices in D.
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Periodic patterns with a regular octagonal domain FΓ

This is the simplest example of a lattice on D.

The regular octagonal lattice
group Γ is generated by four
hyperbolic boosts.

Vertex angles π/8, area 4π.

D/Γ ' double torus (genus 2).

GΓ = G0 ∪ κG0 where κ : z → z̄
and G0 ' GL(2, 3) (|G0| = 48).

13 irreducible representations of GΓO → 13 different bifurcation problems:
4 with dim 1, 2 with dim 2, 4 with dim 3 and 3 with dim 4.

All ”generic” bifurcating patterns have been described in Faye & C. 2011.
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An example with a 1-dim. representation of GΓ

This is the axis of Γ-periodic states which are invariant under the 48-element
subgroup of GΓ generated by SL(2, 3) = {g ∈ GL(2, 3) | det(g) = 1} and a
reflection. Bifurcation is pitchfork.

Remark: the numerical computation of Γ-periodic hyperbolic harmonics is

tricky. There is no explicit formula (unlike in Euclidean case). Need to

decompose FΓ in fundamental triangles tiling it by reflections, then apply finite

elements numerical schemes.
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Bon anniversaire Jean-Marc!
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