

Happy 60th Birthday Jean-Marc!!

Periodic Approximants to Aperiodic Hamiltonians

Jean BELLISSARD

Westfälische Wilhelms-Universität, Münster Department of Mathematics

Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

Sponsoring

SFB 878, Münster, Germany

Contributors

G. DE NITTIS, Department Mathematik, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany

S. BECKUS, Mathematisches Institut, Friedrich-Schiller-Universität Jena, Germany

Main References

J. E. ANDERSON, I. PUTNAM, *Topological invariants for substitution tilings and their associated C*-algebras*, Ergodic Theory Dynam. Systems, **18**, (1998), 509-537.

F. GÄHLER, Talk given at *Aperiodic Order*, *Dynamical Systems*, *Operator Algebra and Topology* Victoria, BC, August 4-8, 2002, *unpublished*.

J. BELLISSARD, R. BENEDETTI, J. M. GAMBAUDO, Spaces of Tilings, Finite Telescopic Approximations, Comm. Math. Phys., **261**, (2006), 1-41.

S. BECKUS, J. BELLISSARD, *Continuity of the spectrum of a field of self-adjoint operators*, Ann. Henri Poincaré, **17**, (2016), 3425-3442.

S. BECKUS, J. BELLISSARD, G. DE NITTIS Spectral Continuity for Aperiodic Quantum Systems I. General Theory, arXiv:1709.00975, August 30, 2017.

S. BECKUS, J. BELLISSARD, G. DE NITTIS Spectral Continuity for Aperiodic Quantum Systems II. Periodic Approximation in 1D, arXiv: 1803.03099, March 8, 2018.

Content

- 1. Continuous Fields
- 2. Approximations
- 3. One-dimensional Cases
- 4. To Conclude

I - Continuous Fields

 $A = (A_t)_{t \in T}$ is a field of self-adjoint operators whenever

- 1. *T* is a topological space,
- 2. for each $t \in T$, \mathcal{H}_t is a Hilbert space,
- 3. for each $t \in T$, A_t is a self-adjoint operator acting on \mathcal{H}_t .

The field $A = (A_t)_{t \in T}$ is called *p2-continuous* whenever, for every polynomial $p \in \mathbb{R}(X)$ with degree at most 2, the following norm map is *continuous*

 $\Phi_p: t \in T \mapsto \|p(A_t)\| \in [0, +\infty)$

Theorem: (S. Beckus, J. Bellissard '16)

- 1. A field $A = (A_t)_{t \in T}$ of self-adjoint bounded operators is p2-continuous if and only if the spectrum of A_t , seen as a compact subset of \mathbb{R} , is a continuous function of t with respect to the Hausdorff metric.
- 2. Equivalently $A = (A_t)_{t \in T}$ is p2-continuous if and only if the spectral gap edges of A_t are continuous functions of t.

The field $A = (A_t)_{t \in T}$ is called $p2-\alpha$ -*Hölder continuous* whenever, for every polynomial $p \in \mathbb{R}(X)$ with degree at most 2, the following norm map is α -*Hölder continuous*

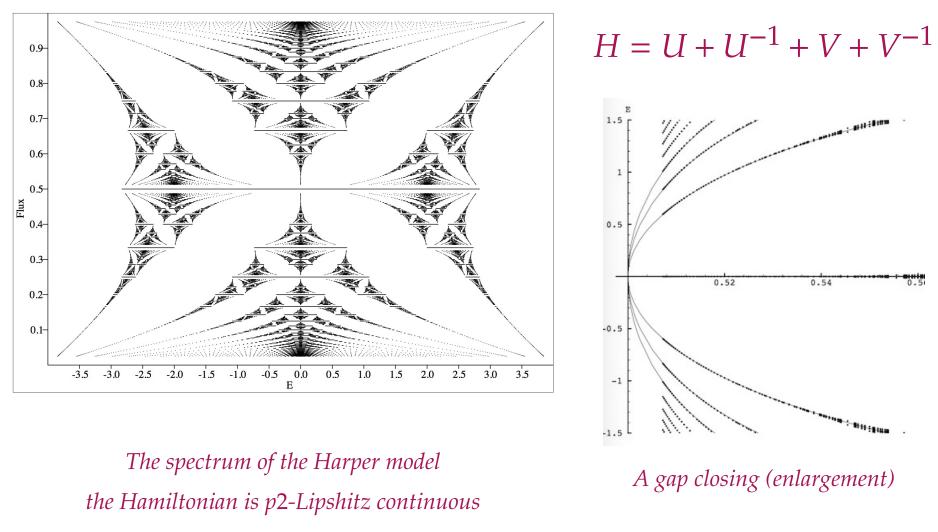
 $\Phi_p: t \in T \mapsto \|p(A_t)\| \in [0, +\infty)$

uniformly w.r.t. $p(X) = p_0 + p_1 X + p_2 X^2 \in \mathbb{R}(X)$ such that $|p_0| + |p_1| + |p_2| \le M$, for some M > 0.

Theorem: (S. Beckus, J. Bellissard '16)

- 1. A field $A = (A_t)_{t \in T}$ of self-adjoint bounded operators is $p2-\alpha$ -Hölder continuous then the spectrum of A_t , seen as a compact subset of \mathbb{R} , is an $\alpha/2$ -Hölder continuous function of t with respect to the Hausdorff metric.
- 2. In such a case, the edges of a spectral gap of A_t are α -Hölder continuous functions of t at each point t where the gap is open.
- 3. At any point t_0 for which a spectral gap of A_t is closing, if the tip of the gap is isolated from other gaps, then its edges are $\alpha/2$ -Hölder continuous functions of t at t_0 .
- 4. Conversely if the gap edges are α -Hölder continuous, then the field A is $p2-\alpha$ -Hölder continuous.

(J. B. 1994)



(JB, '94)

Proving Continuity

• Prove that the field $A = (A_t)_{t \in T}$ is a continuous section of a continuous field $\mathcal{A} = (\mathcal{A}_t)_{t \in T}$ of C^* -algebras

((Kaplansky '51, Tomyama '58, Dixmier-Douady '62).

- Use groupoid C*-algebras (Renault '80).
- Use a *continuous field* of groupoids (Landsman, Ramazan '01).
- Due to possible presence of a *magnetic field*, use also a continuous field of 2-cycles (*Rieffel '89*).
- Build the *tautological groupoid* (Beckus, JB, De Nittis '17) through the set of closed invariant subsets and the Hausdorff topology

(Hausdorff '14, Vietoris '22, Chabauty '50, Fell '62).

Continuity

(Landsman, Ramazan '01, Rieffel '89, Beckus, JB, De Nittis '17)

Theorem Let Γ be a locally compact, Hausdorff, amenable groupoid, with a Haar system and compact set of unit. Let $\mathcal{J}(\Gamma)$ denote its set of invariant subspaces equipped with the Hausdorff topology. Let θ denote a continuous field of 2-cocycles of Γ , continuous over $\mathcal{J}(\Gamma)$.

If $f \in C^*(\Gamma, \theta)$, and if F is a closed invariant subset of the unit space of Γ , let f_F denotes the restriction of f on the sub-groupoid restricted to F. Let $\sigma(f)$ denotes the spectrum of f.

Then, if f is self-adjoint, the map $F \in \mathcal{J}(\Gamma) \mapsto \sigma(f_F) \in \mathcal{K}(\mathbb{R})$ is continuous

In particular, such a vector field is p2-continuous

II - Approximations

Finite Clusters

- The earliest numerical calculation on quasicrystals were made on *finite clusters*, reducing the Hamiltonian to a finite dimensional matrix (*see for instance Kohmoto, Sutherland, PRL* **56**, 2740, 1986)
- Boundary effects can be huge, representing *up to* 20% of the *Density of States (DOS)* in some cases. Using symmetries and inflation rules, algebraic arguments, it is possible to reduce the computational time and to increase tremendously the accuracy of numerical results (*Kohmoto, Sutherland, loc. cit.*)
- It is how *molecular states* were discovered: these are eigenstates localized on a finite cluster. Such eigenstates have a nonzero DOS and lead to a *discontinuity* in the *Integrated DOS*. It was proved later (*Lenz, Stollmann '03*), that such discontinuity can only come from molecular state.

Periodic Approximations

- Periodic approximations were used for quasicrystal as those materials admits periodic phases (*Mackay phases*) close to the aperiodic one in the phase diagram.
- For the 2D-octagonal tiling such approximations where theoretically calculated in (Dumeau, Mossery, Oguey '89)
- The numerical calculation of periodic approximation benefits from software using the Bloch theory to calculate the band structure. The 2D-octagonal tiling was resolved in this way (Benza, Sire '91)
- It was later proved that errors are *exponentially small in the period* of the approximation (*see for instance Prodan '12*), which gives a computational advantage over other methods

Building a Groupoid: methodology

- Let Γ_∞ denote the groupoid associated with the aperiodic system under study.
- Let Γ_n denote an approximate groupoid used in the approximation scheme.
- Take the disjoint union of all of them $\Gamma = \coprod_{n \in \mathbb{N} \cup \{\infty\}} \Gamma_n$
- Define a *topology* on Γ making it a *continuous field* over ℕ ∪ {∞}, namely a *convergent sequence*.

III - One-Dimensional FLC Tilings

GAP-graphs

(also called de Bruijn graphs, Rauzy graphs, Anderson-Putnam complex)

Let \mathcal{A} be a finite *alphabet*, let $\Omega = \mathcal{A}^{\mathbb{Z}}$ be equipped with the shift S. Let $\Sigma \in \mathfrak{I}(\Omega)$ be a subshift. Then

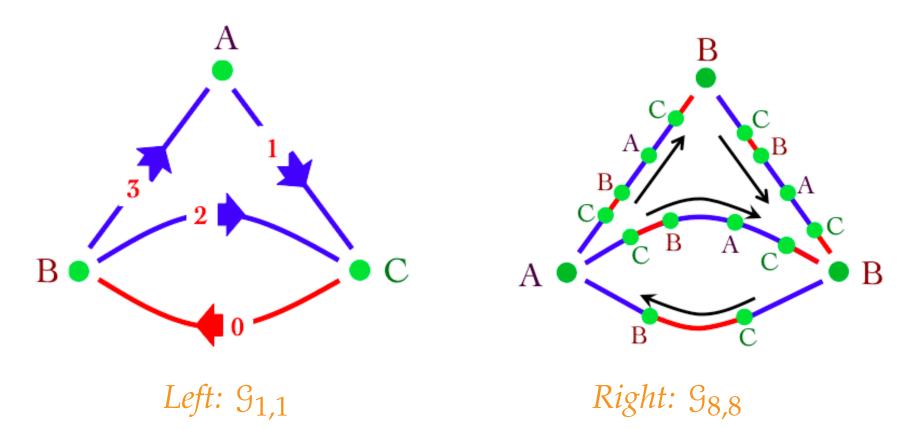
- given $l, r \in \mathbb{N}$ an (l, r)-collared dot is a dotted word of the form $u \cdot v$ with u, v being words of length |u| = l, |v| = r such that uv is a *sub-word* of at least one element of Σ
- an (l,r)-collared letter is a dotted word of the form $u \cdot a \cdot v$ with $a \in A$, u, v being words of length |u| = l, |v| = r such that *uav* is a sub-word of at least one element of Σ : *a collared letter links two collared dots*
- let $\mathcal{V}_{l,r}$ be the set of (l,r)-collared dots, let $\mathcal{E}_{l,r}$ be the set of (l,r)collared letters: then the pair $\mathcal{G}_{l,r} = (\mathcal{V}_{l,r}, \mathcal{E}_{l,r})$ gives a finite *directed graph* (Flye 1894, *de Bruijn* '46, Good '46, Rauzy '83, Anderson-Putnam '98, Gähler, '01)

(also called de Bruijn graphs, Rauzy graphs, Anderson-Putnam complex)

These graphs will be called **GAP**, in reference to the *Gähler* version of the *Anderson-Putnam complexes* for tilings with *Finite Local Complexity* (*FLC*) in any dimensions

The Fibonacci Tiling

- Alphabet: $\mathcal{A} = \{a, b\}$
- **Fibonacci sequence:** generated by the *substitution* $a \rightarrow ab$, $b \rightarrow a$ starting from either $a \cdot a$ or $b \cdot a$



The Thue-Morse Tiling

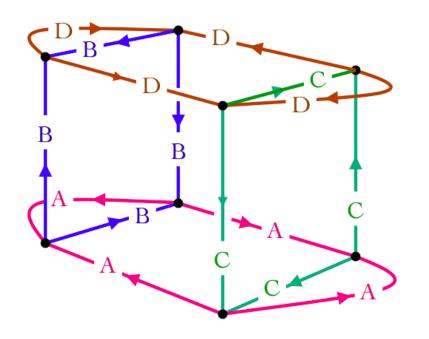
- Alphabet: $\mathcal{A} = \{a, b\}$
- **Thue-Morse sequences:** generated by the *substitution* $a \rightarrow ab$, $b \rightarrow ba$ starting from either $a \cdot a$ or $b \cdot a$



Thue-Morse $\mathcal{G}_{1,1}$

The Rudin-Shapiro Tiling

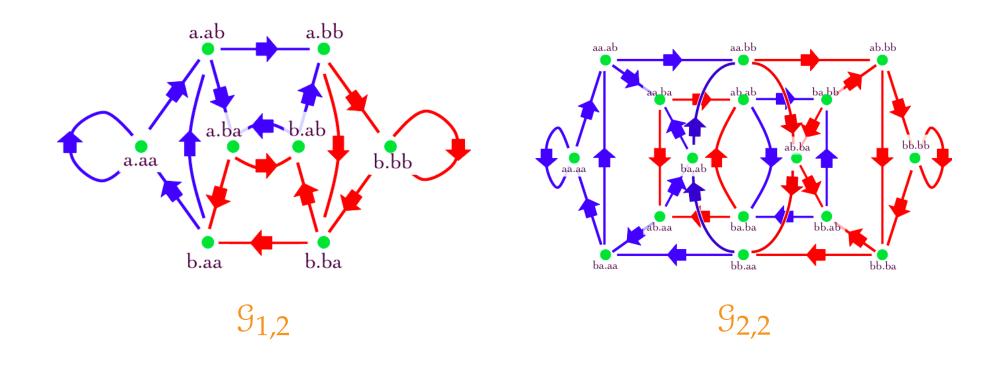
- Alphabet: $\mathcal{A} = \{a, b, c, d\}$
- **Rudin-Shapiro sequences:** generated by the *substitution* $a \rightarrow ab, b \rightarrow ac, c \rightarrow db, d \rightarrow dc$ starting from either $b \cdot a, c \cdot a$ or $b \cdot d, c \cdot d$



Rudin-Shapiro 9_{1,1}

The Full Shift on Two Letters

• **Alphabet:** $\mathcal{A} = \{a, b\}$ all possible word allowed.



Strongly Connected Graphs

The GAP graphs are

- *simple:* between two vertices there is at most one edge,
- *connected:* if the sub-shift is *topologically transitive*, (*i.e.* one orbit is dense), then between any two vertices, there is at least one path connected them,
- has *no dandling vertex*: each vertex admits at least one ingoing and one outgoing vertex,
- if n = l + r = l' + r' then the graphs $\mathcal{G}_{l,r}$ and $\mathcal{G}_{l',r'}$ are *isomorphic* and denoted by \mathcal{G}_n .

Strongly Connected Graphs

(S. Beckus, PhD Thesis, 2016; Beckus, JB, De Nittis '18)

A directed graph is called *strongly connected* if any pair *x*, *y* of vertices there is an *oriented path* from *x* to *y* and another one from *y* to *x*.

Proposition: *If the sub-shift* Σ *is minimal* (i.e. *every orbit is dense), then each of the GAP graph is stongly connected.*

Main result:

Theorem: A subshift $\Sigma \subset A^{\mathbb{Z}}$ can be Hausdorff approximated by a sequence of periodic orbits if and only if it admits is a sequence of strongly connected GAP graphs.

VI - To Conclude

Lipshitz Continuity

1. **Theorem:** An aperiodic system with disorder described by a subshift of finite type (finite alphabet) on the lattice \mathbb{Z}^d and a Hamiltonian with finite range has a spectrum Lipshitz continuous with respect to the subshift expressed as a closed invariant subset of the full shift.

(Beckus, JB, Cornean, 2018, in preparation)

2. **Theorem:** An aperiodic system describing a 1D-quasicrystal, described by cut-and-projection from \mathbb{Z}^2 onto \mathbb{R} , described by a line of slope α , by a Hamiltonian with finite range and pattern equivariant coefficients, has a spectrum Lipshitz continuous with respect to α once the real line is equipped with a suitable ultrametric inducing a Cantor set topology. (Beckus, JB, 2018, in preparation)

• Open Problems: extend the two results on either FLC tilings in any dimension or on quasicrystals in any *cut-and-project* situation.

(Beckus, JB, De Nittis, in project)

Happy 60th Birthday Jean-Marc!!