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Main motivation

I Let (Ω,T ) be the dynamical system associated with a
non-periodic tiling or Delone set. Can we
understand/compute its ergodic/mixing properties? What
about its eigenvalues?



Some History: Minimal Cantor Systems

I A minimal Cantor system is a pair (X ,T ) where X is a
Cantor set, T : X → X is a minimal homeomorphism, i.e.,
every orbit is dense in X .

I λ in S1 is an eigenvalue of (X ,T ) if there exists
f ∈ L2(X , S1) s.t.

f (Tx) = λf (x) a. e.

I If f is continuous and the latter equation holds everywhere,
the eigenvalue is continuous.

I (X ,T ) is (topol.)weakly mixing if there are no non-trivial
(continuous) eigenvalues.



Kakutani Rohlin partitions of minimal Cantor sets

I A Rohlin tower of (X ,T ) is a family of pairwise disjoint
measurable sets of the form

{C,T−1C, . . .T−hC}

I A Kakutani-Rohlin partition is a partition that is a finite
union of disjoint Rohlin Towers.



Kakutani-Rohlin partitions: (incomplete) history

I In the 40’s, Kakutani-Rohlin towers were introduced in the
ergodic setting by Kakutani and Rohlin (independently).

I In 1992, Hermann, Putnam and Skau introduced clopen
KR partitions in the context of minimal Cantor systems.

I In 1999. Durand, Host and Skau used KR partitions to
understand substitution dynamical systems.

I In 2003. Cortez, Durand, Host and Maass gave a first
characterization of eigenvalues for linearly recurrent cantor
systems.

I In 2000? Gambaudo and Martens described Minimal
Cantor systems as inverse limits that are parallel to
Kakutani Rohlin partitions .

I In 2000? Gambaudo, Beneddetti and Bellissard using
tower systems proved the Gap Labelling conjecture.



Kakutani-Rohlin partitions: (The Chile papers)

I Jean-Marc and Elisabeth move to Chile and bring along
Samuel with them

I Gambaudo, Guiraud and Petite studied Frenkel Kontorova
models on 1D-quasicrystals by using Kakutani-Rohlin
partitions.

I Cortez, Gambaudo and Maass characterized rotation
factors for actions of Zd over the Cantor set.

I Jean-Marc and Elisabeth move back to France and bring
along Daniel, Guillermo and José with them.



Alejandro’s and Jean-Marc’s pictures for the towers of
Fibonacci

I Draw picture here.



Index

Motivation: Kakutani Rohlin partitions

Linearly repetitive Delone sets and their dynamical systems

More recent results on eigenvalues and tilings
Known results
Address map and continuous eigenvalues
Characterization of model set with Euclidean internal space



Delone sets



Delone sets



Repetitive and Linearly Repetitive Delone sets

I A R-patch of X is the configuration of points in a ball of
radius R centered at a point of X . A Delone set X is
repetitive if for each patch P of X there is a radius M such
that every ball of radius M contains the center of a
translated copy of P.

I If M ≤ LR, for some constant L then X is linearly repetitive.
I Some substitutions and cut-and-project Delone sets are

linearly repetitive.



Delone dynamical systems

Let X be a repetitive Delone set. The Delone dynamical system
is defined by

Ω = {X − t | t ∈ Rd}

endowed with a ”good” topology and where Rd acts on Ω by
translations.
If we only consider Delone sets such that 0 belongs to the set,
then we get a Cantor set, called the transversal.

Theorem (???)
Ω has the structure of a lamination with Cantor transversal.

Theorem (Gambaudo, Bennedetti, Bellissard)
Ω has the structure of a flat lamination.



Box decompositions and tower systems

I Kakutani Rohlin partitions can be generalized to box
decompositions. A Box is a set B in Ω homeomorphic to
C × D where C is a Cantor set and D is a closed disc (or a
polygon).

I a Box decomposition is a cover of Ω by boxes whose
interiors are pairwise disjoints.

I a Tower system is a sequence of box decompositions that
are ”transversally finer” and ” horizontally finer”



Derived tilings and Tower systems

I If we intersect a box with the orbit of a Delone set X in Ω,
by drawing the boundary of the box on the orbit (which is
Rd ), and doing the same for all the boxes in a box
decomposition, we get a tiling of Rd which is locally
derived from X .

I transverally ”Finer” for tower systems mean that the
transversals of the finer box decomposition are included in
the transversals of the coarser box, and horizontally finer
means that the derived tilings of the finer box
decomposition are supertilings of the coarser box
decomposition.



Derived tilings from a box decomposition



Making a box decompositon horizontally finer than
another



Tower systems or Delone dynamical systems as
inverse limits

I From a Box decomposition, by collapsing the transversal
one gets a branched manifold with flat structure
(Gambaudo, Bennedetti, Bellisard).

I From this one deduces that the Delone system can be
viewed (geometrically) as the inverse limit of branched flat
manifolds.



Tower systems for linearly repetitive systems

I The main idea of linearly repetitive is that one has uniform
bound on the number of boxes in each box decomposition
in a tower system. This allows for bounding the growth of
the size of the faces in the branched manifolds as well as
the number of faces.

I With this we give a new proof for a well-known theorem of
Lagarias Pleasants that establishes the unique ergodicity
of linearly repetitive DElone systems and also give some
bounds for the rate of convergence.
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Cut and Project scheme

A cut and project scheme (CPS) is the data of
I a locally compact Abelian group H.
I a lattices L̃ in Rd × H such that

I its projection on Rd is one-to-one and
I its projection on H is dense.

I a compact subset W of H that is the closure of its interior.

The locally compact Abelian group H is called the internal
space and the set W is called the window.



Cut and Project scheme

A cut and project scheme (CPS) is the data of
I a locally compact Abelian group H.
I a lattices L̃ in Rd × H such that

I its projection on Rd is one-to-one and
I its projection on H is dense.

I a compact subset W of H that is the closure of its interior.

The locally compact Abelian group H is called the internal
space and the set W is called the window.



Cut and Project set or model set

From a CPS (H, L̃,W ) one define a cut and project set or
model set Λ by projecting the intersection L̃ ∩ Rd ×W on Rd .

If meas(∂W ) = 0 we say that the model set is regular.

	
	
	
	
	
	
	
	
	
	
	

Generalisation of lattices: cut-and-project sets. (“model sets”)

Dirk Frettlöh Quasicrystals, cut-and-project sets, and Meyer sets



Dynamical eigenvalues

I Assume that (X ,Rd , µ) is an ergodic dynamical system.

I k in Rd is an eigenvalue of (X ,Rd , µ) if and only if there is f
in L2(X , µ) with f 6= 0 such that for µ almost every Λ′ in X
and for every t in Rd ,

f (Λ′ − t) = exp (i2πk · t)f (Λ′).

f is called the eigenfunction to k .

I An eigenvalue is continuous or topological if it has a
continuous eigenfunction.



Cut and Project scheme and model sets

Theorem (Hof 1995, Schlottmann 2000)
The hull of every regular model set is uniquely ergodic and pure
point. Moreover, all the eigenvalues are topological and the
maximal equicontinuous factor is (T := (Rd × H)/L̃,Rd ).



Meyer sets

Definition
A Delone set Λ is a Meyer set if and only if there is a finite set F
such that

Λ− Λ ⊂ Λ + F .

Examples: Zd , lattices, Delone sets in lattices, some
substitutions, model sets.

Theorem (Lagarias 1995)
Λ is a Meyer set if and only if Λ− Λ is a Delone set.



Charaterization of regular model sets

Theorem (Baake - Lenz - Moody 2006)
Let X be the hull of a repetitive Delone set Λ with finite local
complexity. The following are equivalent:

(i) X is the hull of a regular model set.
(ii) Λ is a Meyer set and the set of points in its maximal

equicontinuous factor with a unique preimage under the
factor map has full measure.



Charaterization of model sets

Theorem (Aujogue 2014)
Let X be the hull of a repetitive Delone set Λ with finite local
complexity. The following are equivalent:

(i) X is the hull of a model set.
(ii) Λ is a Meyer set and there is a point in its maximal

equicontinuous factor with a unique preimage under the
factor map.



Address map

I Let Λ be a FLC Delone set in Rd with 0 ∈ Λ.
I The Abelian group Γ := 〈Λ− Λ〉 is finitely generated.
I We say that Λ has rank r if Γ has rank r .
I Let {v1, . . . , vr} be a basis for 〈Λ− Λ〉.

The address map ϕ : 〈Λ− Λ〉 → Zr ,

x =
r∑

j=1

njvj ∈ 〈Λ− Λ〉 7→ (n1, . . . ,nr )T .
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Address map

Theorem (Lagarias 1999)
A Delone set Λ in Rd , with 0 ∈ Λ, is a Meyer set if and only if it
has finite local complexity and the address map

ϕ : 〈Λ− Λ〉 → Zr

is almost linear, that is, there is a linear map ` : Rd → Rr and a
constant C > 0 such that

∀x ∈ Λ, ‖ϕ(x)− `(x)‖ ≤ C.



Theorem (Allendes-C.)
For every repetitive Meyer set Λ of rank r with 0 ∈ Λ, and every
address map ϕ of Λ, the linear map ` approximating ϕ gives
r ≥ d continuous eigenvalues, all of them Z-linearly
independent.

More precisely, the columns of the representative matrix of ` in
the canonical bases are continuous eigenvalues.
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address map ϕ of Λ, the linear map ` approximating ϕ gives
r ≥ d continuous eigenvalues, all of them Z-linearly
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Topological essential diffractivity

Theorem (Kellendonk - Sadun 2012)
A repetitive Delone set in Rd with local finite complexity has d
linearly independent topological eigenvalues if and only if it is
topologically conjugate to a repetitive Meyer set.

In particular, every repetitive Meyer set has d linearly
independent topological eigenvalues.



Charaterization of model sets

Theorem (Allendes-C.)
Let X be the hull of a repetitive aperiodic Delone set Λ with
finite local complexity. The following are equivalent:

(i) X is the hull of a model set with Euclidean internal space.
(ii) Λ is a Meyer set with rank r > d, there is a point in its

maximal equicontinuous factor with a unique preimage
under the factor map, and the maximal equicontinuous
factor is topologically conjugate to the factor induced by the
address map.



Charaterization of regular model sets

Theorem (Allendes-C.)
Let X be the hull of a repetitive aperiodic Delone set Λ with
finite local complexity. The following are equivalent:

(i) X is the hull of a regular model set.
(ii) Λ is a Meyer set with rank r > d, the set of points in its

maximal equicontinuous factor with a unique preimage
under the factor map has full measure, and the maximal
equicontinuous factor is topologically conjugate to the
factor induced by the address map.



Feliz Cumpleaños Jean-Marc



The transverse space

Let X be the hull of a repetitive aperiodic Delone set. The
transversal of X is the set

Ξ := {Λ ∈ X : 0 ∈ Λ}.

It is a Cantor set.



The transverse groupoid

Consider the set

G := {(Λ, t) ∈ Ξ× R : Λ− t ∈ Ξ}.

Two elements (Λ1, t1) and (Λ2, t2) in G are composable if
Λ2 = Λ1 − t1, in this case we define

(Λ1, t1) · (Λ2, t2) := (Λ1, t1 + t2).

With the induced topology and this local operation G is a
topological groupoid.



A continuous and bounded cocycle

Since the dynamical system (X ,Rd ) is minimal the groupoid G
is also minimal.

For every Λ in Ξ the group 〈Λ− Λ〉 is independent of Λ. Choose
a basis for this group and define all the address maps (ϕΛ)Λ∈Ξ

with this basis.

By Lagarias Theorem for every Λ in Ξ there is a linear map `Λ

and a constant CΛ such that for every (Λ, t) in G we have

‖ϕΛ(t)− `Λ(t)‖ ≤ CΛ.



A continuous and bounded cocycle

Lemma
The map `Λ is independent of Λ and we denoted it by `.

For every (Λ, t) in G put

Φ(Λ, t) = φΛ(t)− `(t).

Φ is a cocycle on G: given two composable elements (Λ1, t1)
and (Λ2, t2) we have

Φ((Λ1, t1) · (Λ2, t2)) = Φ(Λ1, t1) + Φ(Λ2, t2).



Gottchalk-Hedlund Theorem

Hypotheses of Gottchalk-Hedlund Theorem:
I The groupoid G is minimal.
I The cocycle Φ is continuous.
I There is Λ0 in Ξ such that Φ is bounded on the orbit of Λ0:
{Φ(Λ0, t) : for every t ∈ Λ0} is bounded.

Conclusion: There is a continuous map F : Ξ→ Rr such that
for every (Λ, t) in G we have

Φ(Λ, t) = F (Λ)− F (Λ− t).



Topological eigenvalues

In each coordinate we have

ϕ(Λ, t)j − `(t)j = F (Λ)j − F (Λ− t)j .

Then,
e−i2π`(t)j = ei2πF (Λ)j e−i2πF (Λ−t)j .

Putting fj(Λ) = ei2πF (Λ)j we get

fj(Λ− t) = ei2π`(t)j fj(Λ), for every t ∈ Λ.
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